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This paper proposes a method to address the longstanding problem of lack of
monotonicity in estimation of conditional and structural quantile functions, also known
as the quantile crossing problem (Bassett and Koenker (1982)). The method consists
in sorting or monotone rearranging the original estimated non-monotone curve into a
monotone rearranged curve. We show that the rearranged curve is closer to the true
quantile curve than the original curve in finite samples, establish a functional delta
method for rearrangement-related operators, and derive functional limit theory for the
entire rearranged curve and its functionals. We also establish validity of the bootstrap
for estimating the limit law of the entire rearranged curve and its functionals. Our limit
results are generic in that they apply to every estimator of a monotone function, pro-
vided that the estimator satisfies a functional central limit theorem and the function
satisfies some smoothness conditions. Consequently, our results apply to estimation of
other econometric functions with monotonicity restrictions, such as demand, produc-
tion, distribution, and structural distribution functions. We illustrate the results with an
application to estimation of structural distribution and quantile functions using data on
Vietnam veteran status and earnings.

KEYWORDS: Conditional quantiles, structural quantiles, monotonicity problem, re-
arrangement, isotonic regression, functional delta method.

1. INTRODUCTION

THIS PAPER ADDRESSES the longstanding problem of lack of monotonicity in
the estimation of conditional and structural quantile functions, also known as
the quantile crossing problem (Bassett and Koenker (1982) and He (1997)).
The most common approach to estimating quantile curves is to fit a curve, of-

'Previous, more extended, versions of this paper (September 2006, April 2007) are available
at web.mit.edu/~vchern/www/ and www.ArXiv.org. The method developed in this paper has now
been incorporated in the package quantreg (Koenker (2007)) in R. The title of this paper is
(partially) borrowed from the work of Xuming He (1997), to whom we are grateful for the in-
spiration. We would like to thank the editor Oliver Linton, three anonymous referees, Alberto
Abadie, Josh Angrist, Gilbert Bassett, Andrew Chesher, Phil Cross, James Durbin, Ivar Eke-
land, Brigham Frandsen, Raymond Guiteras, Xuming He, Roger Koenker, Joonhwan Lee, Vadim
Marmer, Ilya Molchanov, Francesca Molinari, Whitney Newey, Steve Portnoy, Shinichi Sakata,
Art Shneyerov, Alp Simsek, and participants at BU, CEMFI, CEMMAP Measurement Matters
Conference, Columbia Conference on Optimal Transportation, Columbia, Cornell, Cowles Foun-
dation 75th Anniversary Conference, Duke-Triangle, Ecole Polytechnique, Frontiers of Micro-
econometrics in Tokyo, Georgetown, Harvard-MIT, MIT, Northwestern, UBC, UCL, UIUC, Uni-
versity of Alicante, and University of Gothenburg Conference “Nonsmooth Inference, Analysis,
and Dependence,” for comments that helped us to considerably improve the paper. We are grate-
ful to Alberto Abadie for providing us the data for the empirical example. The authors gratefully
acknowledge research support from the National Science Foundation and Chaire X-Dauphine
“Finance et Développement Durable.”
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ten linear, pointwise for each probability index.? Researchers use this approach
for a number of reasons, including parsimony of the resulting approximations
and excellent computational properties. The resulting fits, however, may not
respect a logical monotonicity requirement—that the quantile curve should be
increasing as a function of the probability index.

This paper introduces a natural monotonization of the empirical curves by
sampling from the estimated nonmonotone model, and then taking the re-
sulting conditional quantile curves which by construction are monotone in
the probability index. This construction of the monotone curve may be seen
as a bootstrap and as a sorting or monotone rearrangement of the original
nonmonotone curve (see Hardy, Littlewood, and Polya (1952), and references
given below). We show that the rearranged curve is closer to the true quantile
curve in finite samples than the original curve is, and derive functional limit
distribution theory for the rearranged curve to perform simultaneous infer-
ence on the entire quantile function. Our theory applies to both dependent
and independent data, and to a wide variety of original estimators, with only
the requirement that they satisfy a functional central limit theorem. Our results
also apply to many other econometric problems with monotonicity restrictions,
such as distribution and structural distribution functions, as well as demand
and production functions, option pricing functions, and yield curves.’ As an
example, we provide an empirical application to estimation of structural distri-
bution and quantile functions based on Abadie (2002) and Chernozhukov and
Hansen (2005, 2006).

There exist other methods to obtain monotonic fits for conditional quantile
functions. He (1997), for example, proposed to impose a location-scale regres-
sion model, which naturally satisfies monotonicity. This approach is fruitful
for location—scale situations, but in numerous cases the data do not satisfy the
location-scale paradigm, as discussed in Lehmann (1974), Doksum (1974), and
Koenker (2005). Koenker and Ng (2005) developed a computational method
for quantile regression that imposes the noncrossing constraints in simultane-
ous fitting of a finite number of quantile curves. The statistical properties of
this method have yet to be studied, and the method does not immediately ap-
ply to other quantile estimation methods. Mammen (1991) proposed two-step
estimators, with mean estimation in the first step followed by isotonization in

2This includes all principal approaches to estimation of conditional quantile functions, such as
the canonical quantile regression of Koenker and Bassett (1978) and censored quantile regression
of Powell (1986). This also includes principal approaches to estimation of structural quantile
functions, such as the instrumental quantile regression methods via control functions of Imbens
and Newey (2009), Blundell and Powell (2003), Chesher (2003), and Ma and Koenker (2006),
and instrumental quantile regression estimators of Chernozhukov and Hansen (2005, 2006).

3See Matzkin (1994) for more examples and additional references, and Chernozhukov,
Fernandez-Val, and Galichon (2009) for further theoretical results that cover the latter set of
applications.
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the second.* Similarly to Mammen (1991), we can employ quantile estimation
in the first step followed by isotonization in the second, obtaining an interest-
ing method whose properties have yet to be studied. In contrast, our method
uses rearrangement rather than isotonization, and is better suited for quan-
tile applications. The reason is that isotonization is best suited for applications
with (near) flat target functions, while rearrangement is best suited for appli-
cations with steep target functions, as in typical quantile applications. Indeed,
in a numerical example closely matching our empirical application, we find
that rearrangement significantly outperforms isotonization. Finally, in an in-
dependent and contemporaneous work, Dette and Volgushev (2008) proposed
to obtain monotonic quantile curves by applying an integral transform to a lo-
cal polynomial estimate of the conditional distribution function, and derived
pointwise limit theory for this estimator. In contrast, we directly monotonize
any generic estimate of a conditional quantile function and then derive generic
functional limit theory for the entire monotonized curve.’

In addition to resolving the problem of estimating quantile curves that avoid
crossing, this paper develops a number of original theoretical results on re-
arranged estimators. It therefore makes both practical and theoretical contri-
butions to econometrics and statistics. Before discussing these contributions
more specifically, it is helpful to review some of the relevant literature and
available results.

We begin the review by noting that the idea of rearrangement goes back at
least to Chebyshev (see Bronshtein et al. (2003, p. 31)), Hardy, Littlewood,
and Polya (1952), and Lorentz (1953), among others. Rearrangements have
been extensively used in functional analysis and operations research (Villani
(2003) and Carlier and Dana (2005)), but not in econometrics or statistics
until recently. Recent research on rearrangements in statistics includes the
work of Fougeres (1997), which used rearrangement to produce a monotonic
kernel density estimator and derived its uniform rates of convergence; Davy-
dov and Zitikis (2005), which considered tests of monotonicity based on re-
arranged kernel mean regression; Dette, Neumeyer, and Pilz (2006) and Dette
and Scheder (2006), which introduced smoothed rearrangements for kernel
mean regressions and derived pointwise limit theory for these estimators; and
Chernozhukov, Fernandez-Val, and Galichon (2009), which used univariate
and multivariate rearrangements on point and interval estimators of monotone
functions based on series and kernel regression estimators. In the context of
our problem, rearrangement is also connected to the quantile regression boot-
strap of Koenker (1994). In fact, our research grew from the realization that

4Isotonization is also known as the pool-adjacent-violators algorithm in statistics and ironing
in economics. It amounts to projecting the original estimate on the set of monotone functions.

SWe refer to Dette and Volgushev (2008) for a more detailed comparison of the two ap-
proaches.
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we could use this bootstrap for the purpose of monotonizing quantile regres-
sions, and we discovered the link to the classical procedure of rearrangement
later, while reading Villani (2003).

The theoretical contributions of this paper are threefold. First, our paper
derives functional limit theory for rearranged estimators and functional delta
methods for rearrangement operators, both of which are important original re-
sults. Second, the paper derives functional limit theory for estimators obtained
by rearrangement-related operations, which are also original results. For ex-
ample, our theory includes as a special case the asymptotics of the conditional
distribution function estimator based on quantile regression, whose properties
have long remained unknown (Bassett and Koenker (1982)). Moreover, our
limit theory applies to functions, encompassing the pointwise results as a spe-
cial case. An attractive feature of our theoretical results is that they do nof rely
on independence of data, the particular estimation method used, or any para-
metric assumption. They only require that a functional central limit theorem
applies to the original estimator of the curve, and the population curves have
some smoothness properties. Our results therefore apply to any quantile model
and quantile estimator that satisfy these requirements. Third, our results im-
mediately yield validity of the bootstrap for rearranged estimators, which is an
important result for practice.

We organize the rest of the paper as follows. In Section 2 we present some
analytical results on rearrangement and then present all the main results; in
Section 3 we provide an application and a numerical experiment that closely
matches the application; in Section 4 we give some concluding remarks; and
in the Appendix we include the proofs of the results. The data and programs
used for the examples are available in the on-line supplement (Chernozhukov,
Fernandez-Val, and Galichon (2010)).

2. REARRANGEMENT: ANALYTICAL AND EMPIRICAL PROPERTIES

In this section, we describe rearrangement, derive some basic analytical
properties of the rearranged curves in the population, establish functional dif-
ferentiability results, and establish functional limit theorems and other estima-
tion properties.

2.1. Rearrangement

We consider a target function u — Qy(u|x) that, for each x € X, maps (0, 1)
to the real line and is increasing in u. Suppose that u +— Q(u|x) is a para-
metric or nonparametric estimator of Qy(u|x). Throughout the paper, we use
conditional and structural quantile estimation as the main application, where
u+ Qo(ulx) is the quantile function of a real response variable Y, given a
vector of regressors X = x. Accordingly, we will usually refer to the functions
u +— Qy(u|x) as quantile functions throughout the paper. In other applications,
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such as estimation of conditional and structural distribution functions, other
names would be appropriate and we need to accommodate different domains,
as described in Remark 1 below. N

Typical estimation methods fit the quantile function Q(u|x) pointwise in
u € (0, 1).° A problem that might occur is that the map u — Q(u|x) may not be
increasing in u, which violates the logical monotonicity requirement.” Another
manifestation of this issue, known as the quantile crossing problem, is that the
conditional quantile curves x — Q(u|x) may cross for different values of u (He
(1997)). Similar issues also arise in estimation of conditional and structural dis-
tribution functions (Hall, Wolff, and Yao (1999) and Abadie (2002)).

We can transform the possibly nonmonotone function u — Q(u|x) into a
monotone function u — Q*(u|x) by quantile bootstrap or rearrangement. That
is, we consider the random variable Y, := Q(U|x), where U ~ Uniform({/)
with ¢/ = (0, 1), and take its quan‘Ei\le function denoted by u — Q*(u|x) in-
stead of the original function u — Q(u|x). This variable Y, has a distribution
function

1
@1) Pl = / HOIx) < v} du,
0

which is naturally monotone in the level y, and a quantile function
(22)  O'(ulx):=F'(ulx) = inf{y: F(y|x) > u},

which is naturally monotone in the index u. Thus, starting with a possibly non-
monotone original curve u — Q(u|x), the rearrangement (2.1)—(2.2) produces
a monotone quantile curve u — Q*(u|x). Of course, the rearranged quantile

function u — Q*(ulx) coincides with the original function u Q(ulx) if the
original function is nondecreasing in u, but differs from it otherwise.

The mechanism (2.1)—(2.2) and its name have a direct relation to the re-
arrangement operator from functional analysis (Hardy, Littlewood, and Polya
(1952)), since u +— Q*(ulx) is the monotone rearrangement of u — Q(u|x).
Equivalently, as we stated earlier, rearrangement has a direct relation to the
quantile bootstrap (Koenker (1994)), since the rearranged quantile curve is
the quantile function of the bootstrap variable produced by the estimated
quantile model. Moreover, we refer the reader to Dette, Neumeyer, and Pilz
(2006, p. 470), who, using a closely related motivation, introduced the idea of

See Koenker and Bassett (1978), Powell (1986), Chaudhuri (1991), Buchinsky (1994), Cham-
berlain (1994), Buchinsky and Hahn (1998), Yu and Jones (1998), Abadie, Angrist, and Imbens
(2002), Honoré, Khan, and Powell (2002), and Chernozhukov and Hansen (2006), among others,
for examples of exogenous, censored, endogenous, nonparametric, and other types of quantile
regression estimators.

"Throughout the paper, by “monotone” we mean (weakly) increasing.
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smoothed rearrangement, which produces smoothed versions of (2.1) and (2.2)
and can be valuable in applications. Finally, for practical and computational
purposes, it is helpful to think of rearrangement as sorting. Indeed to com-
pute the rearrangement of a contmuous functlon U Q(ulx), we 51mply set
Q (u|x) as the uth quantile of {Q(ullx), e, Q(uklx) where {u;, ..., us}isa
sufficiently fine net of equidistant indices in (0, 1).

REMARK 1—Adjusting for Domains Different From the Unit Interval:
Throughout the paper we assume that the domain of all the functions is the
unit interval, &/ = (0, 1), but in many applications we may have to deal with
different domains. For example, in quantile estimation problems, we may con-
sider a subinterval (a, b) of the unit interval as the domain, so as to avoid
estimation of tail quantiles. In distribution estimation problems, we may con-
sider the entire real line as the domain. In such cases, we can first transform
these functions to have the unit interval as the domain. Concretely, suppose
we have an original function Q: (a, b) — R. Then using any increasing bijec-
tive mapping ¢: (a, b) — (0, 1), we can define Q:= Qo ¢ ':(0,1) - R and
then proceed to obtain its rearrangement Q*. In the case where a # —oo and
b # oo, we can take ¢ to be an affine mapping. To obtain an increasing re-
arrangement Q* of O, we then set O* = Q* o ¢.

Let O denote the pointwise probability limit of O, which we will refer to as
the population curve. In the analysis we distinguish the following two cases:

CASE 1—Monotonic Q: The population curve u — Q(ulx) is increasing,
and thus satisfies the monotonicity requirement.

CASE 2—Nonmonotonic Q: The population curve u — Q(u|x) is not in-
creasing due to misspecification, and thus does not satisfy the monotonicity
requirement.

In Case 1 the empirical curve u — Q(ulx) may be nonmonotone due to esti-
mation error, while in Case 2 it may be nonmonotone due to both misspecifica-
tion and estimation error. A leading example of Case 1 is when the population
curve Q is correctly specified, so that it equals the target quantile curve, namely
O(u|x) = Qo(ulx) for all u € (0, 1). Case 1 also allows for some degree of mis-
specification, provided that the population curve, Q # Q,, remains monotone.
A leading example of Case 2 is when the population curve Q is misspecified,
Q # O, to a degree that makes u — Q(u|x) nonmonotone. For example, the
common linear specification u — Q(u|x) = p(x)"B(u) can be nonmonotone
if the support of X is sufficiently rich, while the set of transformations of x,
p(x), is not (Koenker (2005, Chap. 2.5)). Typically, by using a rich enough set
p(x) we can approximate the true function Qy(u|x) sufficiently well, and thus
often avoid Case 2; see Koenker (2005, Chap. 2.5). This is the strategy that we
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generally recommend, since inference and limit theory under Case 1 is theo-
retically and practically simpler than under Case 2. However, in what follows
we analyze the behavior of rearranged estimators in both Cases 1 and 2, since
either of these cases could occur.

In the rest of the section, we establish the empirical properties of the
rearranged estimated quantile functions and the corresponding distribution
functions

(2.3) uv—>§*(u|x) and y|—>f(y|x),

under Cases 1 and 2.

2.2. Basic Analytical Properties of Population Curves

We start by characterizing certain analytical properties of the probability lim-
its or population versions of empirical curves (2.3), namely

1
24)  y> FOylo) = / HOIx) < y}du,
0

ur> O (ulx) :=F ' (ulx) =inf{y: F(y|x) > u}.

We need these properties to derive our main limit results stated in the follow-
ing subsections.

Recall first the following definitions from Milnor (1965). Let g:U/ CR+— R
be a continuously differentiable function. A point u € U/ is called a regular
point of g if the derivative of g at this point does not vanish, that is, d,g(u) # 0,
where d, denotes the partial derivative operator with respect to u. A point u
which is not a regular point is called a critical point. A value y € g(if) is called a
regular value of g if g~'(y) contains only regular points, that is, if Yu € g7'(y),
d,8(u) # 0. A value y which is not a regular value is called a critical value.

Define region ), as the support of Y,, and define regions Y X :={(y, x):y €
Yo, xe XYand UX :=U x X. We assume throughout that )/, C )V, a compact
subset of R, and that x € X, a compact subset of R?. In some applications
the curves of interest are not functions of x or we might be interested in a
particular value x. In this case, we can take the set X' to be a singleton X' = {x}.

ASSUMPTION 1—Properties of Q: We maintain the following assumptions on
Q throughout the paper:
(a) Q:Ux X — Risa continuously differentiable function in both arguments.
(b) The number of elements of {u € U :3,0(ulx) = 0} is uniformly bounded
onxeX.

Assumption 1(b) implies that, for each x € X, d,0(u|x) is not zero almost
everywhere on U and can switch sign only a bounded number of times. Fur-
ther, we define V! to be the subset of regular values of u — Q(u|x) in Y, and
VX ={(y,x):yeV:,xe X}



1100 V. CHERNOZHUKOV, I. FERNANDEZ-VAL, AND A. GALICHON

<
=

0.8
|

0.6
|

0.4

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5

u y

FIGURE 1.—Left: The pseudo-quantile function Q and the rearranged quantile function Q*.
Right: The pseudo-distribution function Q~! and the distribution function F induced by Q.

We use a simple example to describe some basic analytical properties
of (2.4), which we state more formally in the proposition given below. Con-
sider the pseudo-quantile function Q(u) = 5{u + sin(27u)/7}, which is highly
nonmonotone in (0, 1) and therefore fails to be a proper quantile function.
The left panel of Figure 1 shows Q together with its monotone rearrange-
ment Q. We see that O* partially coincides with Q on the areas where Q
behaves like a proper quantile function, and that Q* is continuous and increas-
ing. Note also that 1/3 and 2/3 are the critical points of Q, and 3.04 and 1.96
are the corresponding critical values. The right panel of Figure 1 shows the
pseudo-distribution function Q!, which is multivalued, and the distribution
function F = Q*~" induced by sampling from Q. We see that F is continuous
and does not have point masses. The left panel of Figure 2 shows J,0*, the
sparsity function for Q*. We see that the sparsity function is continuous at the
Q*' image of the regular values of Q and has jumps at the Q*~' image of the
critical values of Q. The right panel of Figure 2 shows d,F, the density function
for F. We see that d,F is continuous at the regular values of Q and has jumps
at the critical values of Q.

The following proposition states more formally the properties of O* and F:

PROPOSITION 1—Basic Properties of F and Q*: The functions y — F(y|x)
and u — Q*(u|x) satisfy the following properties, for each x € X:
(i) The set of critical values, Y, \ Yz, is finite, and fyx\y* dF(ylx)=0.
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FIGURE 2.—Left: The density (sparsity) function of the rearranged quantile function Q*.
Right: The density function of the distribution function F induced by Q.

(ii) Forany y e Y=,

K(ylx)
F(ylx) =" sign{d,Q(u (y1x)|x) }us (y1x)

k=1

+ 1.0 (uk 10 (y1x)|x) < 0},

where {u,(y|x), fork =1,2,..., K(y|x) < oo} are the roots of Q(ulx) =y in
increasing order.

(iii) Foranyy € Y:,the ordinary derivative f(y|x) := d,F(y|x) exists and takes
the form

Kyl 1
0w =2 G oamommr

which is continuous at each 'y € Y:. Forany y € Y\ YV, we set f(y|x) :=0. F(y|x)
is absolutely continuous and strictly increasing in y € ). Moreover, y — f(y|x)
is a Radon—Nikodym derivative of y — F(y|x) with respect to the Lebesgue mea-
sure.

(iv) The quantile function u+> Q*(u|x) partially coincides with u+— Q(u|x);
namely Q*(u|x) = Q(u|x), provided that u — Q(u|x) is increasing at u, and the
preimage of Q*(u|x) under Q is unique.

(V) The quantile function u — Q*(u|x) is equivariant to monotone transfor-
mations of u+ Q(u|x), in particular, to location and scale transformations.
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(vi) The quantile function u > Q*(u|x) has an ordinary continuous deriva-
tive 3,0 (ulx) = 1/f(Q*(u|x)|x), when Q*(u|x) € Vi. This function is also a
Radon—Nikodym derivative with respect to the Lebesgue measure.

(vii) The map (y, x) — F(y|x) is continuous on Y X and the map (u, x) —
QO*(u|x) is continuous on UX .

2.3. Functional Derivatives for Rearrangement-Related Operators

Here we derive functional derivatives for the rearrangement operator
QO+ O and the pre-rearrangement operator Q +— F defined by equa-
tion (2.4). These results constitute the first set of original main theoretical
results obtained in this paper. In the subsequent sections, these results allow
us to establish a generlc functional central limit theorem for the estimated
functions Q and F, as well as to establish validity of the bootstrap for estimat-
ing their limit laws.

To describe the results, let £*°(U/X) denote the set of bounded and mea-
surable functions A :UX — R, let C(UUX) denote the set of continuous func-
tions A:UX — R, and let £'(UX) denote the set of measurable functions
h:UX +— Rsuch that [ [, |h(u|x)|dudx < oo, where du and dx denote the
integration with respect to the Lebesgue measure on U/ and X, respectively.

PROPOSITION 2—Hadamard Derivatives of F and O* With Respect to Q:
(i) Define F(y|x, h,) := fol HO(ulx) + th,(ulx) < y}du.As t — 0,

F(ylx, h;)) — F(y|x)

t
K(ylx)

o h(ui(ylx)|x)
(2.6)  Di(ylx):= ;WL,Q(uk(ylx)lx)l'

(2.5) Dy, (ylx, 1) := — Dy(ylx),

The convergence holds uniformly in any compact subset of YX* :={(y,x):y €
", x € X} for every ||h, — h|lc — 0, where h, € {£*(UX) and h € CUUX).
(ii) Define Q*(u|x, h;) := F~'(y|x, h,) =inf{y : F(y|x, h,) > u}. As t - 0,

(27) Dht(u|x t) = Q ( |x h )t_ Q (u|X) 5h(u|X)7

~ 1 "
(2.8) D) (ulx) -=—mDh(Q (ulx)|x).

The convergence holds uniformly in any compact subset of UX™ = {(u, x):
(Q*(u|x), x) € YX*} for every ||h, — h|s — 0, where h, € £°(UX) and h €
CUX).
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This proposition establishes the Hadamard (compact) differentiability of the
rearrangement operator Q — Q* and the pre-rearrangement operator Q — F
with respect to (0, tangentially to the subspace of continuous functions. Note
that the convergence holds uniformly on regions that exclude the critical values
of the mapping u — Q(u|x). These results are new and could be of indepen-
dent interest. Rearrangement operators include inverse (quantile) operators as
a special case. In this sense, our results generalize the previous results of Gill
and Johansen (1990), Doss and Gill (1992), and Dudley and Norvaisa (1999)
on functional delta method (Hadamard differentiability) for the quantile oper-
ator. There are two main difficulties in establishing the Hadamard differentia-
bility in our case: first, as in the quantile case, we allow the perturbations #, to
Q to be discontinuous functions, though converging to continuous functions;
second, unlike in the quantile case, we allow the perturbed functions Q + th,
to be nonmonotone even when Q is monotone. We need to allow for such rich
perturbations in order to match applications where the empirical perturbations
h,=(Q—-0)/t,fort=1/a, and a, a growing sequence with the sample size 7,
are discontinuous functions, though converging to continuous functions by the
means of a functional central limit theorem; moreover, the empirical (pseudo-)
quantile functions Q = Q + th, are not monotone even when Q is monotone.

The following result deals with the monotonic case. It is worth emphasizing
separately, because functional derivatives are particularly simple and we do
not have to exclude any nonregular regions from the domains.

COROLLARY 1—Hadamard Derivatives of F and Q* With Respect to QO
in the Monotonic Case: Suppose u +— Q(ul|x) has 9,Q0(u|x) > 0 for each
(u,x) eUX. Then YX* =YX and UX* =UX. Therefore, the convergence in
Proposition 2 holds uniformly over the entire Y X and UX, respectively. More-
over, D, (ulx) = h, that is, the Hadamard derivative of the rearranged function
with respect to the original function is the identity operator.

Next we consider the linear functionals obtained by integration,
(y/,x)H/g(ylx,y’)F(ylx)dy,
y

(u’,x)n—>fg(u|x, u)Q*(ulx) du,

with the restrictions on g specified below. These functionals are of interest be-
cause they are useful building blocks for various statistics, for example, Lorenz
curves with function g(u|x, u’) = 1{u < u'}, as discussed in the next section.
The following proposition calculates the Hadamard derivative of these func-
tionals.
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PROPOSITION 3—Hadamard Derivative of Linear Functionals of Q* and F
With Respect to Q: The following results are true with the limits being continuous
on the specified domains:

(i) For any measurable g that is bounded uniformly in its arguments and such
that (x,y) — g(y|x,y') is continuous for almost everywhere (a.c.) y,

/g(ylx,y’)Dht(ylx, t)dy—>/g(ylx,y/)Dh(ylx)dy,
Yy Yy

uniformly in (y', x) € YX.
(ii) For any measurable g such that sup,, . |g(u|x, u’)| € L' (U) and such that
(x,u')— g(ulx, u') is continuous for a.e. u,

(2.9) /g(ulx, u/)ﬁhf(ulx, t)du—)/‘g(u|x, u/)ﬁh(ulx)du,
17 u

uniformly in (u',x) eUX.

It is important to note that Proposition 3 applies to integrals defined over
entire domains, unlike Proposition 2 which states uniform convergence of in-
tegrands over domains excluding nonregular neighborhoods. (Thus, Proposi-
tion 3 does not immediately follow from Proposition 2.) Here integration acts
like a smoothing operation and allows us to ignore these nonregular neigh-
borhoods. To prove convergence of integrals defined over entire domains, we
couple the almost everywhere convergence implied by Proposition 2 with the
uniform integrability of Lemma 3 in the Appendix, and then interchange lim-
its and integrals. We should also note that an alternative way of proving result
(2.9), but not other results in the paper, can be based on the convexity of the
functional in (2.9) with respect to the underlying curve, following the approach
of Mossino and Temam (1981) and Alvino, Lions, and Trombetti (1989). Due
to this limitation, we do not pursue this approach in this paper.

It is also worth emphasizing the properties of the following smoothed func-
tionals. For a measurable function f:R — R, define the smoothing operator S
as

(2.10)  Sf(y):= / ks(y' =y f(y)dy,

where ks(v) = 1{|v| < 6}/26 and & > 0 is a fixed bandwidth. Accordingly, the
smoothed curves SF and SQ* are given by

SF/) = [ ks = PG00 dy,
SO*(u'|x) :=/k3(u/ —u)Q*(u|x)du.

Note that given the quantile function Q*, the smoothed function SQ* has a
convenient interpretation as a local average quantile function or fractile. Since
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we form these curves as differences of the elementary functionals in Proposi-
tion 3 divided by 26, the following corollary is immediate:

COROLLARY 2—Hadamard Derivative of Smoothed Q* and F With Respect
to Q: We have that SD,,(Y'|x,t) — SD,(y'|x) uniformly in (y',x) € YX, and
SD;, (W|x, t) = SD;,(u'|x) uniformly in (1, x) € UX . The results hold uniformly
in the smoothing parameter 6 € [8,, 8,], where 8, and 6, are positive constants.

Note that smoothing allows us to achieve uniform convergence over the en-
tire domain, without excluding nonregular neighborhoods.

2.4. Empirical Properties and Functional Limit Theory
for Rearranged Estimators

Here we state a finite sample result and then derive functional limit laws for
rearranged estimators. These results constitute the second set of original main
theoretical results obtained in this paper.

The following proposition shows that the rearranged quantile curves have
smaller estimation error than the original curves whenever the latter are not
monotone.

PROPOSITION 4—Improvement in Estimation Property Provided by Re-
arrangement: Suppose that Q is an estimator (not necessarily consistent) for
some true quantile curve Q,. Then, the rearranged curve Q* is closer to the true
curve than Q in the sense that, for each x € X,

10" = Qull, <10 — Qoll,, pell,ool,

where | - ||, denotes the L? norm of a measurable function Q:U +— R, namely
101, = {J,, 1Qw)|” du}"'?. The inequality is strict for p € (1, 00) whenever u —
O(ulx) is strictly decreasing on a subset of U of positive Lebesgue measure, while
u > Qo(ulx) is strictly increasing on U. The above property is independent of the
sample size and of the way the estimate of the curve is obtained, and thus continues
to hold in the population.

This property suggests that the rearranged estimators should be preferred
over the original estimators. Moreover, this property does not depend on the
way the quantile model is estimated or any other specifics, and is thus applica-
ble quite generally. Regarding the proof of this property, the weak reduction
in estimation error follows from an application of a classical rearrangement in-
equality of Lorentz (1953) and the strict reduction follows from its appropriate
strengthening (Chernozhukov, Fernandez-Val, and Galichon (2009)).8

8Similar contractivity properties have been shown for the pool-adjacent-violators algorithm
in different contexts. See, for example, Robertson, Wright, and Dykstra (1988) for isotonic re-
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To derive the functional limit laws of rearranged estimators, we maintain the
following assumptions on Q throughout the paper:

ASSUMPTION 2—Properties of Q: The empirical curve Q takes its values in
the space of bounded measurable functions defined on UX , and in {>*(UX),

(211)  a,(Q(ulx) — Q(ulx)) =  G(ulx)

as a stochastic process indexed by (u, x) € UX, where (u, x) — G(u|x) is a sto-
chastic process (typically Gaussian) with continuous paths. Here a,, is a sequence
of constants such that a,, — oo as n — oo, where n is the sample size.

This assumption requires that the original quantile estimator satisfies a func-
tional central limit theorem with a continuous limit stochastic process over the
domain U = (0, 1) for the index u. If (2.11) holds only over a subinterval of
(0, 1), we can accommodate the reduced domain following Remark 1. This
key condition is rather weak and holds for a wide variety of conditional and
structural quantile estimators.” With an appropriate normalization rate and
a fixed x, this assumption holds for series quantile regressions. For example,
Belloni and Chernozhukov (2007) extended the results of He and Shao (2000)
to the process case and established the functional central limit theorem for
a,(Q(ulx) — Q(ulx)) for a fixed x. At the same time, we should also point
out that this assumption does not need to hold in all estimation problems with
monotonicity restrictions.'

The following proposmon derives functional limit laws for the rearranged
quantile estimator Q and the corresponding distribution estimator F, using
the functional differentiation results for the rearrangement-related operators
from the previous section.

PROPOSITION 5—Functional Limit Laws for F and Q*: In > (K), where K
is any compact subset of Y X,

(212)  a, (F(ylx) —F(ylx)) = Dg(ylx)

gression, and Eggermont and LaRiccia (2000) for monotone density estimation. Glad, Hjort, and
Ushakov (2003) showed that a density estimator corrected to be a proper density satisfies a similar
property.

For sufficient conditions, see, for example, Gutenbrunner and Jureckova (1992), Portnoy
(1991), Angrist, Chernozhukov, and Fernandez-Val (2006), and Chernozhukov and Hansen
(2006).

OFor example, Assumption 2 does not hold when we estimate monotone production or de-
mand functions u +— f(u), where u is input or price, using nonparametric kernel or series regres-
sion. We refer the reader to Chernozhukov, Fernandez-Val, and Galichon (2009) for appropriate
additional results that enable us to perform uniform inference in such cases. On the other hand,
Assumption 2 does hold when we estimate monotone production or demand functions u — f(u)
using parametric or semiparametric regression.
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as a stochastic process indexed by (y, x) € YX*; and in £*°(UX ), with UX g =
{(u, x): (Q*(ulx), x) € K},

(213) @, (Q*(ulx) — O*(ulx)) = Dg(ulx)

as a stochastic process indexed by (u, x) € UX, where the maps h — D, and
h +— D, are defined in equations (2.6) and (2.8).

This proposition provides the basis for inference using rearranged quantile
estimators and corresponding distribution estimators.

Let us first discuss inference for the case with a monotonic population
curve Q. It is useful to emphasize the following corollary of Proposition 5:

COROLLARY 3—Functional Limit Laws for F and @* in the Monotonic Case:
Suppose u+— Q(u|x) has 3,Q(u|x) > 0 foreach (u,x) e UX.Then YX* =YX
and UX™ =UX . Accordingly, the convergence in Proposition 5 holds uniformly
over the entire Y X and UX . Moreover, D (u|x) = G(u|x), that is, the rearranged
quantile curves have the same first order asymptotic distribution as the original
estimated quantile curves.

Thus, if the population curve is monotone, we can rearrange the original
nonmonotone quantile estimator to be monotonic without affecting its (first
order) asymptotic properties. Hence, all the inference tools that apply to the
original quantile estimator Q also apply to the rearranged quantile estima-
tor Q*. In particular, if the bootstrap is valid for the original estimator, it is
also valid for the rearranged estimator, by the functional delta method for the
bootstrap. Thus, when Q is monotone, Corollary 3 enables us to perform uni-
form inference on Q and F based on the rearranged estimators Q* and F.

REMARK 2—Detecting and Avoiding Cases With Nonmonotone Q: Before
discussing inference for the case with a nonmonotonic population curve Q, let
us first emphasize that since nonmonotonicity of Q is a rather obvious sign of
specification error, it is best to try to detect and avoid this case. For this purpose
we should use sufficiently flexible functional forms and reject the ones that fail
to pass monotonicity tests. For example, we can use the following generic test
of monotonicity for Q: If Q is monotone, the first order behavior of O* and Q
coincides, and if Q is not monotone, Q* and Q converge to different probability
limits Q* and Q. Therefore, we can reject the hypothesis of monotone Q if a
uniform confidence region for Q based on Q does not contain Q for at least
one point x € X"

This test is conservative, but it is generic and very inexpensive. To build nonconservative tests,
we need to derive the limit laws for ||Q — Q*ll for suitable norms || - ||. These laws will depend
on higher order functional limit laws for quantile estimators, which appear to be nongeneric and
have to be dealt with on a case by case basis.
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Let us now discuss inference for the case with a nonmonotonic population
curve Q. In this case, the large sample properties of the rearranged quantile
estimators Q" substantially differ from those of the initial quantile estima-
tors Q. Proposition 5 still enables us to perform uniform inference on the re-
arranged population curve Q* based on the rearranged estimator Q*, but only
after excluding certain nonregular neighborhoods (for the distribution estima-
tors, the neighborhoods of the critical values of the map u +— Q(u|x); for the
rearranged quantile estimators, the image of these neighborhoods under F).
These neighborhoods can be excluded by locating the points (u, x) where a
consistent estimate of |d,Q(u|x)| is close to zero; see Hendricks and Koenker
(1991) for a consistent estimator of |d,Q(u|x)|.

Next we consider the linear functionals of the rearranged quantile and dis-
tribution estimates,

(y’,x)l—>/g(ylx,y’)f(ylx)dy,
y

aum»/gwnw@mmww
u

The following proposition derives functional limit laws for these functionals.'
Here the convergence results hold without excluding any nonregular neighbor-
hoods, which is convenient for practice in the nonmonotonic case.

PROPOSITION 6—Functional Limit Laws for Linear Functionals of Q* and F:
Under the same restrictions on the function g as in Proposition 3, the following
results hold with the limits being continuous on the specified domains:

(i) As a stochastic process indexed by (y', x) € VX, in £°(YX),

(2.14) w/g@myxﬁﬂm—Fuu»@
Yy

= / g(ylx, y)De(ylx) dy.
RY
(ii) As a stochastic process indexed by (u', x) e UX,in L*(UX),

(2.15) an/g(ulx, W) (O*(u|x) — Q" (ulx)) du
u
= /g(u|x, W)Dg(ulx) du.
u

2Working with these functionals is equivalent to placing our empirical processes into the space
L? (p =1 for rearranged distributions and p = oo for quantiles), equipped with weak™* topology,
instead of strong topology. Convergence in law of the integral functionals, shown in Proposition 6,
is equivalent to the convergence in law of the rearranged estimated processes in such a metric
space.
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The linear functionals defined above are useful building blocks for various
statistics, such as partial means, various moments, and Lorenz curves. For ex-
ample, the conditional Lorenz curve based on rearranged quantile estimators
is

(2.16) i(u/lx) = (/ Hu < u/}é*(ulx) du)/(/ Q*(u|x) du),
u u

which is a ratio of partial and overall conditional means. Hadamard differen-
tiability of the mapping

(2.17) Qe Lu|x):= (/ Hu < u'}O*(u|x) du)/(/ Q*(u|x)du),

with respect to Q immediately follows from (a) the differentiability of a
ratio B/y with respect to its numerator 8 and denominator y at 7y # 0,
(b) Hadamard differentiability of the numerator and denominator in (2.17)
with respect to Q established in Proposition 3, and (c) the chain rule for the
Hadamard derivative. Hence, provided that Q > 0 so that O* > 0, we have that
in the metric space {*(UX),

(2.18)  an(L(1/|x) — L(i/|x))

/1{u§u/}56(u|x)du /ﬁg(ulx)du
u _Ju

= L|x)-
/1{u§u/}Q*(u|x)du /Q*(ulx)du

as an empirical process indexed by (v, x) € UX. In particular, validity of the
bootstrap for estimating this functional limit law in (2.18) holds by the func-
tional delta method for the bootstrap.

We next consider the empirical properties of the smoothed curves obtained
by applying the linear smoothing operator S defined in (2.10) to F and Q*:

SE(y|x) 1= f k(' — WE(yIx) dy,

SO*(u|x) :=fk5(u’—u)§*(u|x)du.

The following corollary immediately follows from Corollary 2 and the func-
tional delta method.

COROLLARY 4—Functional Limit Laws for Smoothed Q* and F: In €% YX),

(219)  a, (SF(y|x) —SF(y|x)) = SDs(y|x),
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as a stochastic process indexed by (y', x) € YX;and in £*(UX),
(220)  a,(SO"(u'|x) - SQ*(u|x)) = SDe(u|x),

as a stochastic process indexed by (u', x) € UX . The results hold uniformly in the
smoothing parameter & € [81, 8,], where 8, and 8, are positive constants.

Thus, as in the case of linear functionals, we can perform inference on SQ*
based on the smoothed rearranged estimates without excluding nonregular
neighborhoods, which is convenient for practice in the nonmonotonic case.
Furthermore, validity of the bootstrap for the smoothed curves follows by the
functional delta method for the bootstrap. Last, we note that it is not possible
to simultaneously allow 6 — 0 and preserve the uniform convergence stated in
the corollary.

Our final corollary asserts validity of the bootstrap for inference on re-
arranged estimators and their functionals. This corollary follows from the func-
tional delta method for the bootstrap (e.g., Theorem 13.9 in Van der Vaart
(1998)).

COROLLARY 5—Validity of the Bootstrap for Estimating Laws of Rearrang-
ed Estimators: If the bootstrap consistently estimates the functional limit law
(2.11) of the empirical process {a,(Q(ulx) — Q(u|x), (u,x) € UX}, then it
also consistently estimates the functional limit laws (2.12), (2.13), (2.14), (2.15),
(2.18), (2.19), and (2.20).

3. EXAMPLES

In this section we apply rearrangement to the estimation of structural quan-
tile and distribution functions. We show how rearrangement monotonizes in-
strumental quantile and distribution function estimates, and demonstrate how
to perform inference on the target functions using the results developed in this
paper. Using a supporting numerical example, we show that rearranged esti-
mators noticeably improve upon original estimators and also outperform iso-
tonized estimators. Thus, rearrangement is necessarily preferable to the stan-
dard approach of simply ignoring nonmonotonicity. Moreover, in quantile es-
timation problems, rearrangement is also preferable to the standard approach
of isotonization used primarily in mean estimation problems.

3.1. Empirical Example

We consider estimation of the causal/structural effects of Vietnam veteran
status X € {0, 1} in the quantiles and distribution of civilian earnings Y. Since
veteran status is likely to be endogenous relative to potential civilian earn-
ings, we employ an instrumental variables approach, using the U.S. draft lot-
tery as an instrument for the Vietnam status (Angrist (1990)). We use the



QUANTILES WITHOUT CROSSING 1111

same data subset from the Current Population Survey as in Abadie (2002)."
We then estimate structural quantile and distribution functions with the in-
strumental quantile regression estimator of Chernozhukov and Hansen (2005,
2006) and the instrumental distribution regression estimator of Abadie (2002).
Under some assumptions, these procedures consistently estimate the structural
quantile and distribution functions of interest."* However, like most estimation
methods mentioned in the Introduction, neither of these procedures explicitly
imposes monotonicity of the distribution and quantile functions. Accordingly,
they can produce estimates in finite samples that are nonmonotonic due to
either sampling variation or violations of instrument independence or other
modeling assumptions. We monotonize these estimates using rearrangement
and perform inference on the target structural functions using uniform confi-
dence bands constructed via bootstrap. We use the programming language R
to implement the procedures (R Development Core Team (2007)). We present
our estimation and inference results in Figures 3-5.

In Figure 3, we show Abadie’s estimates of the structural distribution of
earnings for veterans and nonveterans (left panel) as well as their rearrange-
ments (right panel). For both veterans and nonveterans, the original estimates
of the distributions exhibit clear local nonmonotonicity. The rearrangement
fixes this problem, producing increasing estimated distribution functions. In
Figure 4, we show Chernozhukov and Hansen’s estimates of the structural
quantile functions of earnings for veterans (left panel) as well as their re-
arrangements (right panel). For both veterans and nonveterans, the estimates
of the quantile functions exhibit pronounced local nonmonotonicity. The re-
arrangement fixes this problem, producing increasing estimated quantile func-
tions. In the case of quantile functions, the nonmonotonicity problem is spe-
cially acute for the small sample of veterans.

In Figure 5, we plot uniform 90% confidence bands for the structural quan-
tile functions of earnings for veterans and nonveterans, together with uniform
90% confidence bands for the effect of Vietnam veteran status on the quan-
tile functions for earnings, which measures the difference between the struc-
tural quantile functions for veterans and nonveterans. We construct the uni-
form confidence bands using both the original estimators and the rearranged
estimators based on 500 bootstrap repetitions and a fine net of quantile indices

BThese data consist of a sample of white men, born in 1950-1953, from the March Current
Population Surveys of 1979 and 1981-1985. The data include annual labor earnings, Vietnam
veteran status, and an indicator on the Vietnam era lottery. There are 11,637 men in the sample,
with 2461 Vietnam veterans and 3234 eligible for U.S. military service according to the draft
lottery indicator. Abadie (2002) gave additional information on the data and the construction of
the variables.

“More specifically, Abadie’s (2002) procedure consistently estimates these functions for the
subpopulation of compliers under instrument independence and monotonicity. Chernozhukov
and Hansen’s (2005, 2006) approach consistently estimates these functions for the entire popula-
tion under instrument independence and rank similarity.
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FIGURE 3.—Abadie’s estimates of the structural distributions of earnings for veteran and non-
veterans (left panel), and their rearrangements (right panel).

{0.01, 0.02,...,0.99}. We obtain the bands for the rearranged functions assum-
ing that the population structural quantile regression functions are monotonic,
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FIGURE 4.—Chernozhukov and Hansen’s estimates of the structural quantile functions of
earnings for veterans (left panel), and their rearrangements (right panel).
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FIGURE 5.—Original and rearranged point estimates and corresponding simultaneous 90%
confidence bands for structural quantile functions of earnings (panels A and B) and structural
quantile effect of Vietnam veteran status on earnings (panel C). The bands for the quantile func-
tions (panels A and B) are intersected with the class of monotone functions.

so that the first order behavior of the rearranged estimators coincides with the
behavior of the original estimators. The figure shows that even for the large
sample of nonveterans, the rearranged estimates lie within the original bands,
thus passing our automatic test of monotonicity specified in Remark 2. Thus,
the lack of monotonicity of the estimated quantile functions in this case is likely
caused by sampling error. From the figure, we conclude that veteran status has
a statistically significant negative effect in the lower tail, with the bands for the
rearranged estimates showing a wider range of quantile indices for which this
holds.

3.2. Monte Carlo

We design a Monte Carlo experiment to closely match the previous em-
pirical example. In particular, we consider a location model, where the out-
come is Y =[1, X]a + &, the endogenous regressor is X = 1{[1; Z]7 + v > 0},
the instrument Z is a binary random variable, and the disturbances (¢, v) are
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jointly normal and independent of Z. The true structural quantile functions
are Qy(ulx) =[1; x]la+ Q.(u), x € {0, 1}, where Q, is the quantile function of
the normal variable ¢. The corresponding structural distribution functions are
the inverse of the quantile functions with respect to u. We select the value of
the parameters by estimating this location model parametrically by maximum
likelihood, and then generate samples from the estimated model, holding the
values of the instruments Z equal to those in the data set.””> We use the esti-
mators for the structural distribution and quantile functions described in the
previous section. We monotonize the estimates using either rearrangement or
isotonization. We use isotonization as a benchmark since it is the standard ap-
proach in mean regression problems (Mammen (1991)); it amounts to project-
ing the estimated function on the set of monotone functions.

Table I reports ratios of estimation errors of the rearranged and isotonized
estimates to those of the original estimates, recorded in percentage terms.
The target functions are the structural distribution and quantile functions. We
measure estimation errors using the average L” norms | - ||, with p =1, 2,

and oo, and we compute them as Monte Carlo averages of || fo — f I ,, where f

is the target function and f is either the original or rearranged or isotonized
estimate of this function.

We find that the rearranged estimators noticeably outperform the original
estimators, achieving a reduction in estimation error up to 14%, depending on
the target function and the norm. Moreover, in this case the better approxima-
tion of the rearranged estimates to the structural functions also produces more

TABLE I

RATIOS OF ESTIMATION ERROR OF REARRANGED AND ISOTONIC ESTIMATORS TO THOSE OF
ORIGINAL ESTIMATORS, IN PERCENTAGE TERMS

Veterans Nonveterans Effect

Rearranged Isotonized Rearranged Isotonized Rearranged Isotonized

Structural Distribution Function

L' 99 99 97 98 97 98

L? 99 99 97 98 97 99

L> 96 98 90 94 91 95
Structural Quantile Function

L' 97 98 100 100 97 98

L? 96 97 100 100 96 98

L> 86 87 98 99 86 88

SMore specifically, after normalizing the standard deviation of v to 1, we set 7 =
[—0.92;0.40]", & = [11,753; —911]", the standard deviation of & to 8100, and the covariance be-
tween ¢ and v to 379. We draw 5000 Monte Carlo samples of size n = 11,627. We generate the
values of Y and X by drawing disturbances (&, v) from a bivariate normal distribution with zero
mean and the estimated covariance matrix.
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accurate estimates of the distribution and quantile effects, achieving a 3% to
9% reduction in estimation error for the distribution estimator and a 3% to
14% reduction in estimation error for the quantile estimator, depending on
the norm.

We also find that the rearranged estimators outperform the isotonized esti-
mators, achieving up to a further 4% reduction in estimation error, depending
on the target function and the norm. The reason is that isotonization projects
the original fitted function on the set of monotone functions, converting non-
monotone segments into flat segments. In contrast, rearrangement sorts the
original fitted function, converting nonmonotone segments into steep, increas-
ing segments that preserve measure. In the context of estimating quantile and
distribution functions, the target functions tend to be nonflat, suggesting that
rearrangement should be typically preferred over isotonization.!¢

4. CONCLUSION

This paper develops a monotonization procedure for estimation of condi-
tional and structural quantile and distribution functions based on rearrange-
ment-related operations. Starting from a possibly nonmonotone empirical
curve, the procedure produces a rearranged curve that not only satisfies the
natural monotonicity requirement, but also has smaller estimation error than
the original curve. We derive asymptotic distribution theory for the rearranged
curves, and illustrate the usefulness of the approach with an empirical applica-
tion and a simulation example. There are many potential applications of the re-
sults given in this paper and companion work (Chernozhukov, Fernandez-Val,
and Galichon (2009)) to other econometric problems with shape restrictions
(see, e.g., Matzkin (1994)).

APPENDIX A: PROOFS

PROOF OF PROPOSITION 1: First, note that the distribution of Y, has no
atoms, that is,

PrY, =yl =Pr[Q(Ulx) = y]
=Pr[U € {uel:uisaroot of Q(ulx) = y}] =0,

6To give some intuition about this point, it is instructive to consider a simple example with
a two-point domain {0, 1}. Suppose that the target function fy:{0,1} — R is increasing and
steep, namely f;(0) > fy(1), and the fitted function f:{0, 1} — R is decreasing, with £(0) > f(1).
In this case, isotonization produces a nondecreasing function f:{0, 1} — R, which is flat, with
f0) = f(1) =1[f0) + f(1)]1/2, which is somewhat unsatisfactory. In such cases rearrangement
can significantly outperform isotonization, since it produces the steepest fit, namely it produces
f*:{0,1} = R with f*(0) = f(1) < f*(1) = f(0). This observation provides a simple theoretical
underpinning for the estimation results we see in Table 1.
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since the number of roots of Q(u|x) =y is finite under Assumption 1 and
U ~ Uniform(U). Next, by Assumption 1, the number of critical values of
Q(u|x) is finite, hence claim (i) follows.

Next, for any regular y, we can write F(y|x) as

K(ylx)—1 Up1(y1x)

> [ 0w <ydu
k=0 u

k(Y1)

1
f HOux) < v} du =
0

1
+/ 1{Q(ulx) < y}du,

K(ylx) lx)

where uy(y|x) := 0 and {u,(y|x), fork=1,2,..., K(y|x) < oo} are the roots
of O(ulx) =y in increasing order. Note that the sign of ¢,Q(u|x) alternates
over consecutive uy (y|x), determining whether 1{Q(y|x) < y} = 1 on the inter-
val [u;_1(y|x), ur (¥|x)]. Hence the first term in the previous expression simpli-
fies to fiyolx)_l 1{0, 0 (w1 (y1x)|x) > 0} (w1 (yx) — ur(y|x)), while the last
term simplifies to 1{d, O (ux ) (y1x)|x) < 0}(1 — ugyx(¥1x)). An additional
simplification yields the expression given in claim (ii) of the proposition.

The proof of claim (iii) follows by taking the derivative of the expression in
claim (ii), noting that at any regular value y, the number of solutions K(y|x)
and sign(d,Q(u,(y|x)|x)) are locally constant; moreover,

sign (9, Q(uk (y|x)1x))
19, Q (i (y1x)|x)]

Combining these facts, we get the expression for the derivative given in
claim (iii).

To show the absolute continuity of F' with f being the Radon-Nikodym
derivative, it suffices to show that for each y € )., [ _yw flx)dy =

ffoc dF(ylx) (cf. Theorem 31.8 in Billingsley (1995)). Let V;* be the union
of closed balls of radius ¢ centered on the critical points Y, \ YV}, and define

V=Y \V . Then [* 1y e Vif(ylx)dy = [*_1{y € V'}dF(y|x). Since the
set of critical points ), \ ); is finite and has mass zero under F, [ v OO Hy e
ViYdF(ylx) 1 [*_ dF(ylx) as t — 0. Therefore, [*_1{y € Y(}f(ylx)dy 1

[ folxydy= [ dF(ylx).
Claim (iv) follows by noting that at the regions where s — Q(s|x) is in-

creasing and one-to-one, we have that F(y|x) = fQWM ds = fS<Q_1(y|X) ds =

Q~(y|x). Inverting the equation u = F(Q*(u|x)|x) = Q~(Q*(u|x)|x) yields
Q" (ulx) = Q(ulx).

From claim (v), note that Y, = Q(U|x) has quantile function Q*. A quantile
function is known to be equivariant to monotone increasing transformations,
including location—-scale transformations. Thus, this is true in particular for Q*.

&yuk(y|x) =
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Claim (vi) is immediate from claim (iii).

(vii) The proof of continuity of F is subsumed in the Step 1 of the proof of
Proposition 2 (see below). Therefore, for any sequence x, — x, we have that
F(y|x,) > F(y|x) uniformly in y, and F is continuous. Let 4, — u and x, — x.
Since F(y|x) = u has a unique root y = Q*(u|x), the root of F(y|x,) = u,, that
is, y; = OQ*(u,|x,), converges to y by a standard argument; see, for example, Van
der Vaart and Wellner (1996). Q.E.D.

In the proofs of Propositions 2 and 3 that follow we will repeatedly use
Lemma 1, which establishes the equivalence of continuous convergence and
uniform convergence.

LEMMA 1: Let D and D' be complete separable metric spaces, with D compact.
Suppose f:D > IV is continuous. Then a sequence of functions f,:D+ IV con-
verges to f uniformly on D if and only if for any convergent sequence x,, — x in D,
we have that f,(x,) — f(x).

For the proof of Lemma 1, see, for example, Resnick (1987, p. 2).

PROOF OF PROPOSITION 2: (i) We have that for any 6 > 0, there exists ¢ > 0
such that for u € B, (u,(y|x)) and for small enough ¢ > 0,

H{QO(ul|x) + thy(ulx) < y} < 1{Q(u|x) + t(h(u (y]x)|x) — 8) < y}
forall k € {1,2,..., K(y|x)}, whereas for all u ¢ |, B.(ux(y|x)), as t — 0,

HO(ulx) + th,(ulx) <y} =1{Q(ulx) < y}.

Therefore,

1 1
/ Ol + thy(ulx) < y) dut — / HOx) < v} du

(A1) L t 0
K(ylx)
=y f (1{ Q1) + t(h(u (Y1) |x) — 3) < y)
= B )
Q) < y))/t du,

which by the change of variable y’ = Q(u|x) is equal to

1 K(yX)/ 1 o
— y 5
t o1 Ikt (y1x) 10 —8) |2, 0(Q71(y']x)]x)]

1
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where J; is the image of B.(u,(y|x)) under u — Q(-|x). The change of vari-
able is possible because for & small enough, Q(-|x) is one-to-one between
B, (ui(y|x)) and Ji.

Fixing & > 0, for t — 0, we have that J, N [y, y — t(h(u(y|x)|x) — 6)] =
[,y — t(h(u(ylx)|x) — &)1 and [,0(Q"' (¥'|x)|x)| = . Q(ur(y|x)|x)| as
O~ '(y'|x) = ur(y|x). Therefore, the right hand term in (A.1) is no greater
than

K(ylx)

Z —h(u(ylx)|x) + 6 o(1).

19,0 (y|x)]x)]
Similarly

K(ylx)

Z —h(uk(yIX)Ix)—5+0(1)

£ 12,0 (Y1) 0]

bounds (A.1) from below. Since § > 0 can be made arbitrarily small, the result
follows.

To show that the result holds uniformly in (y, x) € K, a compact subset of
YX*, we use Lemma 1. Take a sequence of (y,, x;) in K that converges to
(¥, x) € K. Then the preceding argument applies to this sequence, since (a) the
function (y, x) — —h(ug(y|x)|x) /9,0 (ur(y|x)|x)| is uniformly continuous on
K and (b) the function (y, x) — K(y|x) is uniformly continuous on K. To
see (b), note that K excludes a neighborhood of critical points (Y \ Vi, x € X),
and therefore can be expressed as the union of a finite number of compact
sets (K1, ..., Kj) such that the function K(y|x) is constant over each of these
sets, that is, K(y|x) = k; for some integer k; > 0, for all (y,x) € K; and
jefl,..., M}. Likewise, (a) follows by noting that the limit expression for
the derivative is continuous on each of the sets (K, ..., Kj) by the assumed
continuity of /4 (u|x) in both arguments, continuity of u,(y|x) (implied by the
implicit function theorem), and the assumed continuity of 4,0 (u|x) in both
arguments.

(ii) For a fixed x, the result follows by part (i) of this proposition, by Step 1
below, and by an application of the Hadamard differentiability of the quantile
operator shown by Doss and Gill (1992). Step 2 establishes uniformity over
xeX.

Step 1. Let K be a compact subset of Y X™. Let (y;, x,) be a sequence in K,
convergent to a point, say (y, x). Then, for every such sequence, &, := || 4, +
10C1x,) — QC1X)|leo + [y: — y| — 0, and

(A2)  |F(ylx,, hy) — F(y|x)|

=

1
/ [1{Qulx) + thi(ulx) < y} — H{Q(ulx) < y}] du
0
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=

1
f 1{1Q(ulx) -yl < &) du| — 0,
0

where the last step follows from the absolute continuity of y — F(y|x), the dis-
tribution function of Q(U|x). By setting 4, = 0, the above argument also veri-
fies that F(y|x) is continuous in (y, x). Lemma 1 implies uniform convergence
of F(y|x, h,) to F(y|x), which in turn implies by a standard argument!” the
uniform convergence of quantiles Q*(u|x, h,) — Q*(u|x), uniformly over K*,
where K* is any compact subset of I/ X*.

Step 2. We have that uniformly over K*,

F(Q(ulx, ho)lx, he) — F(Q*(ulx, hy)|x)
t
=D, (Q"(ulx, h))|x) + o(1)
=D, (Q"(ulx)|x) + o(1),

(A3)

using part (i) of Proposition 2, Step 1, and the continuity properties of D, (y|x).
Furthermore, uniformly over K*, by Taylor expansion and Proposition 1, as
t— 0,

F(Q (ulx, h)|x) — F(Q"(ulx)|x)
t
Q" (ulx, h) — O (ulx)

= f(Q"(ulx)|x) ; +o(D)

(A4)

and (as will be shown below)

FQ"(ulx, holx, hy) — F(Q™(ulx)|x)
t

(A5) o(1)

as t — 0. Observe that the left-hand side of (A.5) equals that of (A.4) plus that
of (A.3). The result then follows.

It only remains to show that equation (A.5) holds uniformly in K*. Note
that for any right-continuous cumulative distribution function (c.d.f.) F, we
have that u < F(Q*(u)) < u+ F(Q*(u)) — F(Q*(u)—), where F(-—) denotes
the left limit of F, that is, F(xo—) = lim,,,, F(x). For any continuous, strictly
increasing c.d.f. F, we have that F(Q*(u)) = u. Therefore, write

_ FQ (ulx, h))lx, ho) — F(Q"(ulx)|x)
- t

- u+ F(Q"(ulx, h)lx, h,) — F(Q*(ulx, he) — |x, h) —u
- t

0

17See, for example, Lemma 1 in Chernozhukov and Fernandez-Val (2005).
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< F(Q*(u|x9 ht)|x9 ht) _F(Q*(l’”x’ ht) - |x7 ht)
- t
W [F(Q*(ulx, h)|x, h,) — F(O*(ulx, h,)|x)]
t
_F(Q (ulx, hy) — |x, hy) — F(Q*(ulx, hy) — |x)]
t

2 Dy(Q* (ulx, h)|x) — Dy(Q"(ulx, hy) — 1x) + o(1) = o(1),

as t — 0, where in (1) we use that F(Q*(ulx, h,)|x) = F(Q*(u|x, h,) —|x) since
F(y|x) is continuous and strictly increasing in y, and in (2) we use part (i) of
Proposition 2. Q.E.D.

The following lemma, due to Pratt (1960), will be very useful to prove
Lemma 3 and Proposition 3.

LEMMA 2: Let |f,| < G,, and suppose that f, — f and G, — G almost every-
where. Then if [ G, — [ G and [ G is finite, then [ f, — [ f.

LEMMA 3—Boundedness and Integrability Properties: Under the hypotheses
of Proposition 2, we have that, for all (u, x) e UX and h, € {*(UX),

(A6) 1Dy (ulx, D] < 1]l
and, forall (y,x) e VX,

b

1 /
(A7) |Dh;(y|x,t)|§A(y|x,t)=/ 1{|Q(u|x)_ty|St”h’”""}du
0

where for any x, — x € X and |k, — h'||.c > Owith i e C(UX), as t — O,
A(ylx, 1) = 2|W [l f(y1x)  forae.ye) and

/A(ylx,,t)dy—>/2||h/||oof(y|x)dy-
Y y

PROOF: To show (A.6), note that

(A8)  sup [Dy(ulx, )| <Kl

(u,x)elUx

immediately follows from the equivariance property noted in claim (v) of
Proposition 1.

The inequality (A.7) is trivial. That for any x, - x € X, A(y|x,, t) —
2l |l f (ylx) for a.e. y € YV follows by applying Proposition 2, with func-
tions h,(u|x) = ||h,|l and h,(u|x) = —||h}|| (for the case when f(y|x) >0,
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and trivially otherwise). Similarly, that for any y, — y € V, A(ylx,¢t) —
2|11 |l f(ylx) for a.e. x € X follows by Proposition 2 (for the case when
f(y|x) > 0, and trivially otherwise).

Furthermore, by Fubini’s theorem,

1 _ ’
(A.9) /A(y|x,,t)dy:/ (/ H{IQ(ulx,) y|5t”ht”oo}dy> Ju.
y 0 y

t

= fi(w)

Note that f,(u) < 2|/h)|~. Moreover, for almost every u, f,(u) = 2|h| for
small enough ¢, and 2| A)|, converges to 2||A'|| as t — 0. Then, trivially,
2 fol 17l o du — 2|1 || . By Lemma 2, the right-hand side of (A.9) converges
to 2|7 {| - Q.E.D.

PROOF OF PROPOSITION 3: Define m,(y|x, y') := g(ylx, y) Dy, (y|x, t) and
m(ylx,y) = g(ylx,y)D,(y|x). To show claim (i), we need to demonstrate
that for any y, — y" and x, — x,

(A.10) / m (1, ¥ dy — / m(ylx, ) dy,
R% y

and that the limit is continuous in (x,y’). We have that |m,(y|x;, y;)| is
bounded, for some constant C, by CA(y|x,, t) which converges a.e. and the
integral of which converges to a finite number by Lemma 3. Moreover, by
Proposition 2, for almost every y, we have m,(y|x,, y;) — m(y|x, y’). We con-
clude that (A.10) holds by Lemma 2.

To check continuity, we need to show that for any y; — y’ and x, — x,

(A.11) /m(ylx,,y;)dy—>/m(y|x7y/)dY~
v y

We have that m(y|x,,y) — m(y|x,y’) for almost every y. Moreover,
m(y|x,;,y;) is dominated by 2|gll«llZllef(¥|Xx,), which converges to
2118l 1 2]l f (y1x) for almost every y, and, moreover, [, lIgllll/tllof (y1x) dy
converges to ||gllo |l 2]l We conclude that (A.11) holds by Lemma 2.

To show claim (ii), define m, (u|x, u') = g(ulx, u’)ﬁht(u|x) and m(u|x,u') =
g(ulx, u/)5h(u|x). Here we need to show that for any u, — ' and x, — x,

(A.12) /mt(ulx,,u;)dua/m(upc, u)du,
u u

and that the limit is continuous in (¢', x). We have that m, (u|x,, u,) is bounded
by g(u|x,)|lh;:ll., Which converges to g(u|x)| k| for a.e. u. Furthermore,
the integral of g(u|x,)| /|l converges to the integral of g(u|x)| k| by the
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dominated convergence theorem. Moreover, by Proposition 2, we have that
m,(u)x,, u,) — m(u|x, u’) for almost every u. We conclude that (A.12) holds
by Lemma 2.

To check the continuity of the limit, we need to show that for any u, — v’
and x, — x,

(A.13) /m(ulxl,u;)du—>[m(u|x,u’)du.
u u

We have that m(ul|x,, u,) — m(u|x,u’) for almost every u. Moreover, for
small enough ¢, m(u|x,, u,) is dominated by |g(u|x,, u)|||h]|, Which con-
verges for almost every value of u to |g(u|x, u')||| |l as t — 0. Furthermore,
the integral of |g(u|x,, u})|||h|l converges to the integral of |g(u|x, u)|||4]l«
by the dominated convergence theorem. We conclude that (A.13) holds by
Lemma 2. O.E.D.

PROOF OF PROPOSITION 5: This proposition simply follows by the functional
delta method (e.g., Van der Vaart (1998)). Instead of restating this method, it
takes less space to simply recall the proof in the current context.

To show the first part, consider the map g,(y, x|h) = a,(F(y|x, h/a,) —
F(y|x)). The sequence of maps satisfies g,/ (y, x|h,y) — D;(y|x) in £*°(K) for
every subsequence h,, — h in £°(UX), where h is continuous. It follows by the
extended continuous mapping theorem that, in £*(K), g,(y, x|a,(Q(ulx) —
Q(Lﬂx))) = Dg(y|x) as a stochastic process indexed by (y,x), since
a,(Q(ulx) — Qulx)) = G(ulx) in £*UX).

We conclude similarly for the second part. Q.E.D.

PROOF OF PROPOSITION 6: This follows by the functional delta method, sim-

ilarly to the proof of Proposition 5. Q.E.D.
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