Quantile Curves without Crossing

Victor Chernozhukov Iván Fernández-Val Alfred Galichon

MIT

Boston University

Ecole Polytechnique

Déjeuner-Séminaire d'Economie

Ecole polytechnique, November 12 2007

Aim of the talk

• Present the methodology and applications of **Quantile Regression**

Aim of the talk

- Present the methodology and applications of Quantile Regression
- Indentify and correct a common problem for several estimation procedures Quantile Regression

Aim of the talk

- Present the methodology and applications of Quantile Regression
- Indentify and correct a common problem for several estimation procedures Quantile Regression
- Study the impact of the **correction** on the estimator of the measure

Introduction

Quantile Regression and Two applications Rearranging Quantile Curves Properties and illustrations

This talk:

- 1 Quantile Regression and Two applications
 - The Value-at-Risk
 - Engle curves
- 2 Rearranging Quantile Curves
 - The crossing problem
 - The rearrangement operation
 - Overview of the literature
- 3 Properties and illustrations
 - Graphical properties
 - Approximation properties
 - Large-sample properties properties

The Value-at-Risk

The Value-at-Risk Engle curves

Aim: measure & manage risk of portfolio's contingent loss Y.

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators

The Value-at-Risk

The Value-at-Risk Engle curves

Aim: measure & manage risk of portfolio's contingent loss Y.

• $VaR_{\alpha}(Y) =$ smallest capital amount to cover losses in $\alpha\%$ cases...

The Value-at-Risk

The Value-at-Risk Engle curves

Aim: measure & manage risk of portfolio's contingent loss Y.

- $VaR_{\alpha}(Y) =$ smallest capital amount to cover losses in $\alpha\%$ cases...
- is robust to tail behaviour (eg. more than variance)

The Value-at-Risk Engle curves

The Value-at-Risk

Aim: measure & manage risk of portfolio's contingent loss Y.

- $VaR_{\alpha}(Y) =$ smallest capital amount to cover losses in $\alpha\%$ cases...
- is robust to tail behaviour (eg. more than variance)
- has become a market standard for market risk measurement (Basle II 1st pillar)

The Value-at-Risk Engle curves

The Value-at-Risk

Aim: measure & manage risk of portfolio's contingent loss Y.

- $VaR_{\alpha}(Y) =$ smallest capital amount to cover losses in $\alpha\%$ cases...
- is robust to tail behaviour (eg. more than variance)
- has become a market standard for market risk measurement (Basle II 1st pillar)
- is however criticized among both practitioners and academics

The Value-at-Risk Engle curves

VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a management tool.

The Value-at-Risk Engle curves

VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a management tool.

• Desirable property: **subadditivity** "Merging does not make risk appear larger" (Artzner et al., 1999)

The Value-at-Risk Engle curves

VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a management tool.

 Desirable property: subadditivity "Merging does not make risk appear larger" (Artzner et al., 1999)
 ⇒ Fails to be satisfied by VaR.

The Value-at-Risk Engle curves

VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a management tool.

- Desirable property: subadditivity "Merging does not make risk appear larger" (Artzner et al., 1999)
 ⇒ Fails to be satisfied by VaR.
- Alternative "coherent" measures have been proposed.
 - Expected Shortfall: average loss beyond given level

The Value-at-Risk Engle curves

VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a management tool.

- Desirable property: subadditivity "Merging does not make risk appear larger" (Artzner et al., 1999)
 ⇒ Fails to be satisfied by VaR.
- Alternative "coherent" measures have been proposed.
 - Expected Shortfall: average loss beyond given level

- **distortion measures:** weighted loss average; higher weights toward higher losses.

The Value-at-Risk Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function.

The Value-at-Risk Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function. Let $F_Y(y) = Pr(Y \le y)$: distribution function of Y, and $Q_Y(u) = F_Y^{-1}(u)$ quantile function.

The Value-at-Risk Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function. Let $F_Y(y) = Pr(Y \le y)$: distribution function of Y, and $Q_Y(u) = F_Y^{-1}(u)$ quantile function.

• The VaR is is precisely $VaR_{\alpha}(Y) = Q_Y(\alpha)$.

The Value-at-Risk Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function. Let $F_Y(y) = Pr(Y \le y)$: distribution function of Y, and $Q_Y(u) = F_Y^{-1}(u)$ quantile function.

- The VaR is is precisely $VaR_{\alpha}(Y) = Q_Y(\alpha)$.
- Distorsion measures can be written $\rho(Y) = \int_0^1 \varphi(u) Q_Y(u) du$, where φ is increasing.

The Value-at-Risk Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function. Let $F_Y(y) = Pr(Y \le y)$: distribution function of Y, and $Q_Y(u) = F_Y^{-1}(u)$ quantile function.

- The VaR is precisely $VaR_{\alpha}(Y) = Q_Y(\alpha)$.
- Distorsion measures can be written $\rho(Y) = \int_0^1 \varphi(u) Q_Y(u) du$, where φ is increasing.

Example. Expected Shortfall: $\varphi(u) = 1\{u \ge \alpha\}/(1 - \alpha)$.

The Value-at-Risk Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function. Let $F_Y(y) = Pr(Y \le y)$: distribution function of Y, and $Q_Y(u) = F_Y^{-1}(u)$ quantile function.

- The VaR is precisely $VaR_{\alpha}(Y) = Q_Y(\alpha)$.
- Distorsion measures can be written $\rho(Y) = \int_0^1 \varphi(u) Q_Y(u) du$, where φ is increasing. **Example.** Expected Shortfall: $\varphi(u) = 1\{u \ge \alpha\}/(1-\alpha)$.
- Thus estimation of VaR/distorsion measure requires estimation of **quantile function**.

The Value-at-Risk Engle curves

Engel Curves

• Y response variable, X regressor, the *u*-th quantile of Y given X = x

$$Q_0(u|x) = \inf\{y : F(y|x) \ge u\}.$$

 QR estimates a linear approximation to the conditional quantile

$$Q(u|x) = x'\beta(u)$$

- QR fits for different quantiles provide a description of the entire conditional distribution
 Example: Buchinsky (1994) uses QR to describe the evolution of the wage distribution in the U.S.
- Here, y = food expenditure ; x = household income.

The Value-at-Risk Engle curves

Engel Curves by Quantile Regression

The Value-at-Risk Engle curves

Engel Curves by Quantile Regression

Chernozhukov, Fernández-Val, Galichon

Rearranging VaR estimators

The Value-at-Risk Engle curves

Quantile regression

Given covariate X (information at period t), estimate QR model

 $Q_{Y|X}(u|x) = x'\beta(u).$

The Value-at-Risk Engle curves

Quantile regression

Given covariate X (information at period t), estimate QR model

$$Q_{Y|X}(u|x) = x'\beta(u).$$

estimate using

$$\hat{\beta}\left(u\right) = \arg\min_{\beta \in \mathbb{R}^{d}} \sum_{k=1}^{n} u\left(Y_{k} - X_{k}^{\prime}\beta\right)^{+} + (1-u)\left(Y_{k} - X_{k}^{\prime}\beta\right)^{-}$$

The Value-at-Risk Engle curves

Quantile regression

Given covariate X (information at period t), estimate QR model

$$Q_{Y|X}(u|x) = x'\beta(u).$$

estimate using

$$\hat{\beta}\left(u\right) = \arg\min_{\beta \in \mathbb{R}^{d}} \sum_{k=1}^{n} u\left(Y_{k} - X_{k}^{\prime}\beta\right)^{+} + (1-u)\left(Y_{k} - X_{k}^{\prime}\beta\right)^{-}$$

 Autoregressive case- the covariate X captures past information. Several models: Quantile Autoregression, CaViaR, Dynamic Quantile...

The crossing problem The rearrangement operation Overview of the literature

The crossing problem

The crossing problem The rearrangement operation Overview of the literature

The crossing problem

- In fact it may be non-monotonic if
 - the QR model is misspecified, or
 - the sample size is small

The crossing problem The rearrangement operation Overview of the literature

The crossing problem

- In fact it may be non-monotonic if
 - the QR model is misspecified, or
 - the sample size is small
- VaR context: a higher confidence level would require less capital!

The crossing problem The rearrangement operation Overview of the literature

The crossing problem

- In fact it may be non-monotonic if
 - the QR model is misspecified, or
 - the sample size is small
- VaR context: a higher confidence level would require less capital!
- can have adverse managemental effects / lack of trust for the tool...

The crossing problem The rearrangement operation Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator $\hat{Q}_{Y|X}(u|x)$ to simulate Y|X = x.

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators

The crossing problem The rearrangement operation Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator $\hat{Q}_{Y|X}(u|x)$ to simulate Y|X = x.

 \circ draw $U\sim \mathcal{U}[0,1]$ and take $Y_x:=\widehat{Q}(U|x)$ (bootstrap).

The crossing problem The rearrangement operation Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator $\hat{Q}_{Y|X}(u|x)$ to simulate Y|X = x.

- \circ draw $U\sim \mathcal{U}[0,1]$ and take $Y_x:=\widehat{Q}(U|x)$ (bootstrap).
- take distribution function $\widehat{F}(y|x) = Pr(Y_x \leq y)$, ie.

$$\widehat{F}(y|x) = \int_0^1 \mathbb{1}\{\widehat{Q}(u|x) \le y\} du$$

The crossing problem The rearrangement operation Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator $\hat{Q}_{Y|X}(u|x)$ to simulate Y|X = x.

- \circ draw $U\sim \mathcal{U}[0,1]$ and take $Y_x:=\widehat{Q}(U|x)$ (bootstrap).
- take distribution function $\widehat{F}(y|x) = Pr(Y_x \leq y)$, ie.

$$\widehat{F}(y|x) = \int_0^1 \mathbb{1}\{\widehat{Q}(u|x) \le y\} du$$

 \circ invert to recover *rearranged quantile* $\widehat{\mathcal{F}}^{-1}(u|x)$

The crossing problem The rearrangement operation Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator $\hat{Q}_{Y|X}(u|x)$ to simulate Y|X = x.

- \circ draw $U\sim \mathcal{U}[0,1]$ and take $Y_x:=\widehat{Q}(U|x)$ (bootstrap).
- take distribution function $\widehat{F}(y|x) = Pr(Y_x \leq y)$, ie.

$$\widehat{F}(y|x) = \int_0^1 \mathbb{1}\{\widehat{Q}(u|x) \le y\} du$$

 \circ invert to recover *rearranged quantile* $\widehat{\mathcal{F}}^{-1}(u|x)$

If the original estimator $\hat{Q}_X(u|x)$ is monotonic, then $\widehat{F}^{-1}(u|x)$ coincides with it.

The crossing problem The rearrangement operation Overview of the literature

The rearrangement: illustration

The crossing problem The rearrangement operation Overview of the literature

Literature review

- Quantile Regression: Koenker & Bassett (1978). Dynamic, autoregressive context, VaR: Chernozhukov & Umantsev (2001), Koenker & Xiao (2006), Engle & Manganelli (2007), Gourieroux & Jasiak (2007).
- Increasing rearrangement: Hardy, Littlewood & Polya (1930's), Mossino & Temam (1979). In Statistics: Fougeres (1997), C F-V & G (2006), Dette, Neumeyer, and Pilz (2006).
- Other monotonization procedure: location-scale model of He (1997). Dynamic Quantile Model, Gourieroux & Jasiak (2007). Constraint optimization Koenker & Ng (2005).

Analytical Properties

Graphical properties

- As an example, take Q(u) to be a non-monotone function of u - slope changes sign twice in [0, 1].
- Rearranged curve is monotonically increasing and coincides with Q(u) for points where $Q^{-1}(y)$ is uniquely defined.
- The derivative of the rearranged curve is a proper density function, continuous at the regular values of Q(u).

Graphical properties Approximation properties Large-sample properties properties

Analytical Properties: Example

Chernozhukov, Fernández-Val, Galichon

Rearranging VaR estimators

Graphical properties Approximation properties Large-sample properties properties

Analytical Properties: Example

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators

Estimation Properties

Graphical properties Approximation properties Large-sample properties properties

Denote $Q_0(u|x)$: true conditional quantile curve

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators

Graphical properties Approximation properties Large-sample properties properties

Estimation Properties

Denote $Q_0(u|x)$: true conditional quantile curve

• For $p \in [1,\infty]$, rearrangement inequality:

$$\int_0^1 |Q_0(u|x) - \widehat{F}^{-1}(u|x)|^p du \leq \int_0^1 |Q_0(u|x) - x'\widehat{\beta}(u)|^p du.$$

Graphical properties Approximation properties Large-sample properties properties

Estimation Properties

Denote $Q_0(u|x)$: true conditional quantile curve

• For $p \in [1,\infty]$, rearrangement inequality:

$$\int_0^1 |Q_0(u|x) - \widehat{F}^{-1}(u|x)|^p du \leq \int_0^1 |Q_0(u|x) - x'\widehat{\beta}(u)|^p du.$$

This property is **independent** of the sample size (holds in population).

Graphical properties Approximation properties Large-sample properties properties

Estimation Properties

Denote $Q_0(u|x)$: true conditional quantile curve

• For $p \in [1,\infty]$, rearrangement inequality:

$$\int_0^1 |Q_0(u|x) - \widehat{F}^{-1}(u|x)|^p du \le \int_0^1 |Q_0(u|x) - x'\widehat{\beta}(u)|^p du.$$

- This property is **independent** of the sample size (holds in population).
- Rearranged quantile curves have a smaller estimation error than the original curves whenever the latter are not monotone.

Illustration

Graphical properties Approximation properties Large-sample properties properties

C

Chernozhukov, Fernández-Val, Galichon

Rearranging VaR estimators

Graphical properties Approximation properties Large-sample properties properties

Statistical properties (large sample)

• Fix an *x*, and suppose

$$\sqrt{n}x'(\hat{\beta}(u) - \beta(u)) \Rightarrow x'G(u)$$

where G is a Gaussian process. The population curve $u \rightarrow x'\beta(u)$ is assumed to be increasing.

Graphical properties Approximation properties Large-sample properties properties

Statistical properties (large sample)

• Fix an *x*, and suppose

$$\sqrt{n}x'(\hat{\beta}(u) - \beta(u)) \Rightarrow x'G(u)$$

where G is a Gaussian process. The population curve $u \rightarrow x'\beta(u)$ is assumed to be increasing.

• Recall $\widehat{F}(y|x) = \int_0^1 \mathbb{1}\{x'\hat{eta}(u) \leq y\}du$. One has

Graphical properties Approximation properties Large-sample properties properties

Statistical properties (large sample)

• Fix an *x*, and suppose

$$\sqrt{n}x'(\hat{\beta}(u) - \beta(u)) \Rightarrow x'G(u)$$

where G is a Gaussian process. The population curve u → x'β(u) is assumed to be increasing.
Recall F(y|x) = ∫₀¹ 1{x'β̂(u) ≤ y}du. One has

 $\sqrt{n}(\widehat{F}(y|x) - F(y|x)) \Rightarrow F'(y|x)[x'G(F(y|x))]$

Graphical properties Approximation properties Large-sample properties properties

Statistical properties (large sample)

• Fix an *x*, and suppose

$$\sqrt{n}x'(\hat{\beta}(u) - \beta(u)) \Rightarrow x'G(u)$$

where *G* is a Gaussian process. The population curve $u \rightarrow x'\beta(u)$ is assumed to be increasing. • Recall $\widehat{F}(y|x) = \int_0^1 1\{x'\hat{\beta}(u) \le y\}du$. One has

$$\sqrt{n}(\widehat{F}(y|x) - F(y|x)) \Rightarrow F'(y|x)[x'G(F(y|x))]$$

• For quantiles, one has

$$\sqrt{n}(\widehat{F}^{-1}(u|x) - F^{-1}(u|x)) \Rightarrow x'G(u)$$
 in $\ell^{\infty}((0,1))$

Graphical properties Approximation properties Large-sample properties properties

Statistical properties (large sample)

• Fix an *x*, and suppose

$$\sqrt{n}x'(\hat{\beta}(u) - \beta(u)) \Rightarrow x'G(u)$$

where *G* is a Gaussian process. The population curve $u \rightarrow x'\beta(u)$ is assumed to be increasing. • Recall $\widehat{F}(y|x) = \int_0^1 1\{x'\hat{\beta}(u) \le y\}du$. One has

$$\sqrt{n}(\widehat{F}(y|x) - F(y|x)) \Rightarrow F'(y|x)[x'G(F(y|x))]$$

• For quantiles, one has

$$\sqrt{n}(\widehat{F}^{-1}(u|x) - F^{-1}(u|x)) \Rightarrow x'G(u)$$
 in $\ell^{\infty}((0,1))$

(same asymptotic limit as for the original curve $u \mapsto x' \hat{\beta}(u)$).

Graphical properties Approximation properties Large-sample properties properties

Statistical properties, comments

• The rearranged curve has the same asymptotic error term as the original curve!...

Graphical properties Approximation properties Large-sample properties properties

Statistical properties, comments

- The rearranged curve has the same asymptotic error term as the original curve!...
- Not incompatible with finite sample properties

Graphical properties Approximation properties Large-sample properties properties

Statistical properties, comments

- The rearranged curve has the same asymptotic error term as the original curve!...
- Not incompatible with finite sample properties
- Convenient for testing purposes, as it does not modify the asymptotic properties of a test, while improving approximation in finite sample.

Graphical properties Approximation properties Large-sample properties properties

Empirical Application: Engel Curves

- We use the original Engel (1857) data to estimate the relationship between food expenditure and annual household income.
- Data set is based on 235 budget surveys of 19th century working-class Belgium households .
- Plot of quantile regression process (as a function of u) shows quantile-crossing for 5% percentile of income. No crossing problem for the sample median of income.
- Rearrangement procedure produces monotonically increasing curves - coincides with QR for the median of income.

Graphical properties Approximation properties Large-sample properties properties

Empirical Application: Engel Curves

Graphical properties Approximation properties Large-sample properties properties

Uniform Inference: Engel Curves

- **Quantile-uniform inference** can be performed using the rearranged quantile curves.
- Next figure plots simultaneous 90% confidence intervals for the conditional quantile process of food expenditure for two different values of income, the sample median and the 1 percent sample percentile.
- Bands for QR are obtained by **bootstrap** using 500 repetitions and a grid of quantiles {0.10, 0.11, ..., 0.90}.
- Bands for rearranged curves are constructed assuming that estimand of QR is monotonically correct.
- Rearranged bands lie within QR bands points towards lack of monotonicity due to small sample size.

Graphical properties Approximation properties Large-sample properties properties

Uniform Inference: Engel Curves

Chernozhukov, Fernández-Val, Galichon

Rearranging VaR estimators

Graphical properties Approximation properties Large-sample properties properties

Smoothing: Engel Curves

- Uniform bands can be constructed for smoothed quantile regression and rearranged curves.
- Previous bootstrap procedure is valid for smoothed rearranged curves even **under population non monotonicity.**
- Smoothed estimates with box kernel and bandwidth = 0.05.
- Almost perfect overlap of the bands indication of population monotonicity.
- Smoothing reduces widths of the bands, but it is not enough to monotonize quantile regression curves.

Graphical properties Approximation properties Large-sample properties properties

Smoothing: Engel Curves

Chernozhukov, Fernández-Val, Galichon

Rearranging VaR estimators

Graphical properties Approximation properties Large-sample properties properties

Estimation Properties: Monte Carlo

• We consider two versions of the location-scale shift model:

$$y_i = x'_i \alpha + (x'_i \gamma) \epsilon_i, \quad Q_0(u|x_i) = x'_i (\alpha + \gamma F_{\epsilon}^{-1}(u))$$

- (1) **Linear:** $x_i = (1, z_i)$
- (2) **Piecewise Linear:** $x_i = (1, z_i, 1\{z_i > Med[z]\} \times z_i)$
- Parameters calibrated to Engel application
- 1,000 Monte Carlo samples of n = 235 from a normal with same mean and variance as the residuals $\epsilon_i = (y_i x'_i \alpha)/(x'_i \gamma)$.
- Regressors fixed to the values of income in Engel data set.
- We estimate a linear model: $Q(u|x_i) = x'_i\beta(u)$ for $x_i = (1, z_i)$

Graphical properties Approximation properties Large-sample properties properties

Approximation Properties: Monte Carlo

	(1) Correct Specification			(2) Incorrect Specification		
	Original	Rearranged	Ratio	Original	Rearranged	Ratio
L^1	6.79	6.61	0.96	7.33	7.02	0.95
L ²	7.99	7.69	0.95	8.72	8.20	0.93
L ³	8.93	8.51	0.95	9.85	9.12	0.92
L ⁴	9.70	9.17	0.94	10.78	9.86	0.91
L^{∞}	17.14	15.32	0.90	19.44	16.44	0.85

• Each entry of the table gives a Monte Carlo average of

$$L^p(\tilde{Q}) := \left(\int |Q_0(u|x_0) - \tilde{Q}(u|x_0)|^p du\right)^{1/p}$$

for
$$\widetilde{Q}(u|x_0) = x'_0 \hat{\beta}(u)$$
, $\widetilde{Q}(u|x_0) = \widehat{F}^{-1}(u|x_0)$, and $x_0 = 452$

Chernozhukov, Fernández-Val, Galichon

Rearranging VaR estimators

Conclusion

Graphical properties Approximation properties Large-sample properties properties

Further research directions and extensions:

- Probability curves
- Demand curves
- Growth curves
- Yield curves

Graphical properties Approximation properties Large-sample properties properties

Thank you! alfred.galichon@polytechnique.edu

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators