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Aim of the talk

Present the methodology and applications of Quantile
Regression

Indentify and correct a common problem for several
estimation procedures Quantile Regression

Study the impact of the correction on the estimator of the
measure
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This talk:

1 Quantile Regression and Two applications
The Value-at-Risk
Engle curves

2 Rearranging Quantile Curves
The crossing problem
The rearrangement operation
Overview of the literature

3 Properties and illustrations
Graphical properties
Approximation properties
Large-sample properties properties
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The Value-at-Risk

Aim: measure & manage risk of portfolio’s contingent loss Y .

VaRα(Y ) = smallest capital amount to cover losses in α%
cases...

is robust to tail behaviour (eg. more than variance)

has become a market standard for market risk measurement
(Basle II 1st pillar)
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The Value-at-Risk
Engle curves

The Value-at-Risk

Aim: measure & manage risk of portfolio’s contingent loss Y .

VaRα(Y ) = smallest capital amount to cover losses in α%
cases...

is robust to tail behaviour (eg. more than variance)

has become a market standard for market risk measurement
(Basle II 1st pillar)

is however criticized among both practitioners and academics
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VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a
management tool.

Desirable property: subadditivity “Merging does not make
risk appear larger” (Artzner et al., 1999)
⇒ Fails to be satisfied by VaR.
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management tool.
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The Value-at-Risk
Engle curves

VaR and coherent measures

Many authors have pointed out the shortfalls of VaR as a
management tool.

Desirable property: subadditivity “Merging does not make
risk appear larger” (Artzner et al., 1999)
⇒ Fails to be satisfied by VaR.

Alternative “coherent” measures have been proposed.
- Expected Shortfall: average loss beyond given level
- distortion measures: weighted loss average; higher weights
toward higher losses.
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Recall the definition of a quantile function.
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VaR and Quantile estimation

Recall the definition of a quantile function.
Let FY (y) = Pr(Y ≤ y): distribution function of Y , and
QY (u) = F−1

Y (u) quantile function.
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VaR and Quantile estimation

Recall the definition of a quantile function.
Let FY (y) = Pr(Y ≤ y): distribution function of Y , and
QY (u) = F−1

Y (u) quantile function.

The VaR is is precisely VaRα(Y ) = QY (α).

Distorsion measures can be written ρ(Y ) =
∫ 1
0 ϕ(u)QY (u)du,

where ϕ is increasing.
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VaR and Quantile estimation

Recall the definition of a quantile function.
Let FY (y) = Pr(Y ≤ y): distribution function of Y , and
QY (u) = F−1

Y (u) quantile function.

The VaR is is precisely VaRα(Y ) = QY (α).

Distorsion measures can be written ρ(Y ) =
∫ 1
0 ϕ(u)QY (u)du,

where ϕ is increasing.
Example. Expected Shortfall: ϕ(u) = 1{u ≥ α}/(1 − α).

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators



Introduction
Quantile Regression and Two applications

Rearranging Quantile Curves
Properties and illustrations

The Value-at-Risk
Engle curves

VaR and Quantile estimation

Recall the definition of a quantile function.
Let FY (y) = Pr(Y ≤ y): distribution function of Y , and
QY (u) = F−1

Y (u) quantile function.

The VaR is is precisely VaRα(Y ) = QY (α).

Distorsion measures can be written ρ(Y ) =
∫ 1
0 ϕ(u)QY (u)du,

where ϕ is increasing.
Example. Expected Shortfall: ϕ(u) = 1{u ≥ α}/(1 − α).

Thus estimation of VaR/distorsion measure requires
estimation of quantile function.
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Engel Curves

Y response variable, X regressor, the u-th quantile of Y given
X = x

Q0(u|x) = inf{y : F (y |x) ≥ u}.
QR estimates a linear approximation to the conditional
quantile

Q(u|x) = x ′β(u)

QR fits for different quantiles provide a description of the
entire conditional distribution
Example: Buchinsky (1994) uses QR to describe the evolution
of the wage distribution in the U.S.

Here, y=food expenditure ; x = household income.

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators



Introduction
Quantile Regression and Two applications

Rearranging Quantile Curves
Properties and illustrations

The Value-at-Risk
Engle curves

Engel Curves by Quantile Regression
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Quantile regression

Given covariate X (information at period t), estimate QR model

QY |X (u|x) = x ′β (u) .
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Quantile regression

Given covariate X (information at period t), estimate QR model

QY |X (u|x) = x ′β (u) .

estimate using

β̂ (u) = arg min
β∈Rd

n∑
k=1

u
(
Yk − X ′

kβ
)+

+ (1 − u)
(
Yk − X ′

kβ
)−
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Quantile regression

Given covariate X (information at period t), estimate QR model

QY |X (u|x) = x ′β (u) .

estimate using

β̂ (u) = arg min
β∈Rd

n∑
k=1

u
(
Yk − X ′

kβ
)+

+ (1 − u)
(
Yk − X ′

kβ
)−

Autoregressive case- the covariate X captures past
information. Several models: Quantile Autoregression,
CaViaR, Dynamic Quantile...
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The crossing problem

In the QR procedure, nothing ensures that Q̂Y |X (u|x) = x ′β̂ (u)
be increasing in u.

Chernozhukov, Fernández-Val, Galichon Rearranging VaR estimators



Introduction
Quantile Regression and Two applications

Rearranging Quantile Curves
Properties and illustrations

The crossing problem
The rearrangement operation
Overview of the literature

The crossing problem

In the QR procedure, nothing ensures that Q̂Y |X (u|x) = x ′β̂ (u)
be increasing in u.

In fact it may be non-monotonic if
- the QR model is misspecified, or
- the sample size is small
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The crossing problem

In the QR procedure, nothing ensures that Q̂Y |X (u|x) = x ′β̂ (u)
be increasing in u.

In fact it may be non-monotonic if
- the QR model is misspecified, or
- the sample size is small

VaR context: a higher confidence level would require less
capital!
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The crossing problem
The rearrangement operation
Overview of the literature

The crossing problem

In the QR procedure, nothing ensures that Q̂Y |X (u|x) = x ′β̂ (u)
be increasing in u.

In fact it may be non-monotonic if
- the QR model is misspecified, or
- the sample size is small

VaR context: a higher confidence level would require less
capital!

can have adverse managemental effects / lack of trust for the
tool...
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A proposed solution

Suppose we use the (flawed) estimator Q̂Y |X (u|x) to simulate
Y |X = x .
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A proposed solution

Suppose we use the (flawed) estimator Q̂Y |X (u|x) to simulate
Y |X = x .

draw U ∼ U [0, 1] and take Yx := Q̂(U|x) (bootstrap).
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The crossing problem
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Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator Q̂Y |X (u|x) to simulate
Y |X = x .

draw U ∼ U [0, 1] and take Yx := Q̂(U|x) (bootstrap).

take distribution function F̂ (y |x) = Pr(Yx ≤ y), ie.

F̂ (y |x) =

∫ 1

0
1{Q̂(u|x) ≤ y}du
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The crossing problem
The rearrangement operation
Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator Q̂Y |X (u|x) to simulate
Y |X = x .

draw U ∼ U [0, 1] and take Yx := Q̂(U|x) (bootstrap).

take distribution function F̂ (y |x) = Pr(Yx ≤ y), ie.

F̂ (y |x) =

∫ 1

0
1{Q̂(u|x) ≤ y}du

invert to recover rearranged quantile F̂−1(u|x)
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The crossing problem
The rearrangement operation
Overview of the literature

A proposed solution

Suppose we use the (flawed) estimator Q̂Y |X (u|x) to simulate
Y |X = x .

draw U ∼ U [0, 1] and take Yx := Q̂(U|x) (bootstrap).

take distribution function F̂ (y |x) = Pr(Yx ≤ y), ie.

F̂ (y |x) =

∫ 1

0
1{Q̂(u|x) ≤ y}du

invert to recover rearranged quantile F̂−1(u|x)

If the original estimator Q̂X (u|x) is monotonic, then F̂−1(u|x)
coincides with it.
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The rearrangement: illustration
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Literature review

Quantile Regression: Koenker & Bassett (1978). Dynamic,
autoregressive context, VaR: Chernozhukov & Umantsev
(2001), Koenker & Xiao (2006), Engle & Manganelli (2007),
Gourieroux & Jasiak (2007).

Increasing rearrangement: Hardy, Littlewood & Polya
(1930’s), Mossino & Temam (1979). In Statistics: Fougeres
(1997), C F-V & G (2006), Dette, Neumeyer, and Pilz (2006).

Other monotonization procedure: location-scale model of
He (1997). Dynamic Quantile Model, Gourieroux & Jasiak
(2007). Constraint optimization Koenker & Ng (2005).
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Analytical Properties

As an example, take Q(u) to be a non-monotone function of
u - slope changes sign twice in [0, 1].

Rearranged curve is monotonically increasing and coincides
with Q(u) for points where Q−1(y) is uniquely defined.

The derivative of the rearranged curve is a proper density
function, continuous at the regular values of Q(u).
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Estimation Properties

Denote Q0(u|x): true conditional quantile curve

For p ∈ [1,∞], rearrangement inequality:∫ 1

0
|Q0(u|x) − F̂−1(u|x)|pdu ≤

∫ 1

0
|Q0(u|x) − x ′β̂(u)|pdu.
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Estimation Properties

Denote Q0(u|x): true conditional quantile curve

For p ∈ [1,∞], rearrangement inequality:∫ 1

0
|Q0(u|x) − F̂−1(u|x)|pdu ≤

∫ 1

0
|Q0(u|x) − x ′β̂(u)|pdu.

This property is independent of the sample size (holds in
population).
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Estimation Properties

Denote Q0(u|x): true conditional quantile curve

For p ∈ [1,∞], rearrangement inequality:∫ 1

0
|Q0(u|x) − F̂−1(u|x)|pdu ≤

∫ 1

0
|Q0(u|x) − x ′β̂(u)|pdu.

This property is independent of the sample size (holds in
population).

Rearranged quantile curves have a smaller estimation error
than the original curves whenever the latter are not monotone.
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Illustration

x1  x2  

True

Original

Rearranged

a

c

b

d

ap + bp ≤ cp + dp
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Statistical properties (large sample)

Fix an x , and suppose

√
nx ′(β̂(u) − β(u)) ⇒ x ′G (u)

where G is a Gaussian process. The population curve
u → x ′β(u) is assumed to be increasing.
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Fix an x , and suppose

√
nx ′(β̂(u) − β(u)) ⇒ x ′G (u)

where G is a Gaussian process. The population curve
u → x ′β(u) is assumed to be increasing.

Recall F̂ (y |x) =
∫ 1
0 1{x ′β̂(u) ≤ y}du. One has
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Statistical properties (large sample)

Fix an x , and suppose

√
nx ′(β̂(u) − β(u)) ⇒ x ′G (u)

where G is a Gaussian process. The population curve
u → x ′β(u) is assumed to be increasing.

Recall F̂ (y |x) =
∫ 1
0 1{x ′β̂(u) ≤ y}du. One has

√
n(F̂ (y |x) − F (y |x)) ⇒ F ′(y |x)[x ′G (F (y |x))]
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Statistical properties (large sample)

Fix an x , and suppose

√
nx ′(β̂(u) − β(u)) ⇒ x ′G (u)

where G is a Gaussian process. The population curve
u → x ′β(u) is assumed to be increasing.

Recall F̂ (y |x) =
∫ 1
0 1{x ′β̂(u) ≤ y}du. One has

√
n(F̂ (y |x) − F (y |x)) ⇒ F ′(y |x)[x ′G (F (y |x))]

For quantiles, one has

√
n(F̂−1(u|x) − F−1(u|x)) ⇒ x ′G (u) in �∞((0, 1))
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Statistical properties (large sample)

Fix an x , and suppose

√
nx ′(β̂(u) − β(u)) ⇒ x ′G (u)

where G is a Gaussian process. The population curve
u → x ′β(u) is assumed to be increasing.

Recall F̂ (y |x) =
∫ 1
0 1{x ′β̂(u) ≤ y}du. One has

√
n(F̂ (y |x) − F (y |x)) ⇒ F ′(y |x)[x ′G (F (y |x))]

For quantiles, one has

√
n(F̂−1(u|x) − F−1(u|x)) ⇒ x ′G (u) in �∞((0, 1))

(same asymptotic limit as for the original curve u 
→ x ′β̂(u)).
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Statistical properties, comments

The rearranged curve has the same asymptotic error term as
the original curve!...
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Graphical properties
Approximation properties
Large-sample properties properties

Statistical properties, comments

The rearranged curve has the same asymptotic error term as
the original curve!...

Not incompatible with finite sample properties

Convenient for testing purposes, as it does not modify the
asymptotic properties of a test, while improving approximation
in finite sample.
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Empirical Application: Engel Curves

We use the original Engel (1857) data to estimate the
relationship between food expenditure and annual household
income.

Data set is based on 235 budget surveys of 19th century
working-class Belgium households .

Plot of quantile regression process (as a function of u) shows
quantile-crossing for 5% percentile of income. No crossing
problem for the sample median of income.

Rearrangement procedure produces monotonically increasing
curves - coincides with QR for the median of income.
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Empirical Application: Engel Curves
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Uniform Inference: Engel Curves

Quantile-uniform inference can be performed using the
rearranged quantile curves.

Next figure plots simultaneous 90% confidence intervals for
the conditional quantile process of food expenditure for two
different values of income, the sample median and the 1
percent sample percentile.

Bands for QR are obtained by bootstrap using 500
repetitions and a grid of quantiles {0.10, 0.11, ..., 0.90}.
Bands for rearranged curves are constructed assuming that
estimand of QR is monotonically correct.

Rearranged bands lie within QR bands - points towards lack of
monotonicity due to small sample size.
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Uniform Inference: Engel Curves
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Smoothing: Engel Curves

Uniform bands can be constructed for smoothed quantile
regression and rearranged curves.

Previous bootstrap procedure is valid for smoothed rearranged
curves even under population non monotonicity.

Smoothed estimates with box kernel and bandwidth = 0.05.

Almost perfect overlap of the bands - indication of population
monotonicity.

Smoothing reduces widths of the bands, but it is not enough
to monotonize quantile regression curves.
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Smoothing: Engel Curves
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Estimation Properties: Monte Carlo

We consider two versions of the location-scale shift model:

yi = x ′
i α + (x ′

i γ)εi , Q0(u|xi ) = x ′
i (α + γF−1

ε (u))

(1) Linear: xi = (1, zi)
(2) Piecewise Linear: xi = (1, zi , 1{zi > Med [z]} × zi )

Parameters calibrated to Engel application

1,000 Monte Carlo samples of n = 235 from a normal with
same mean and variance as the residuals εi = (yi − x ′

i α)/(x ′
i γ).

Regressors fixed to the values of income in Engel data set.

We estimate a linear model: Q(u|xi) = x ′
i β(u) for xi = (1, zi )
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Approximation Properties: Monte Carlo

(1) Correct Specification (2) Incorrect Specification
Original Rearranged Ratio Original Rearranged Ratio

L1 6.79 6.61 0.96 7.33 7.02 0.95
L2 7.99 7.69 0.95 8.72 8.20 0.93
L3 8.93 8.51 0.95 9.85 9.12 0.92
L4 9.70 9.17 0.94 10.78 9.86 0.91
L∞ 17.14 15.32 0.90 19.44 16.44 0.85

Each entry of the table gives a Monte Carlo average of

Lp(Q̃) :=

(∫
|Q0(u|x0) − Q̃(u|x0)|pdu

)1/p

for Q̃(u|x0) = x ′
0β̂(u), Q̃(u|x0) = F̂−1(u|x0), and x0 = 452
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Conclusion

Further research directions and extensions:

Probability curves

Demand curves

Growth curves

Yield curves
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Thank you!
alfred.galichon@polytechnique.edu
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