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Abstract

We consider the problem of superhedging under volatility uncertainty for an in-

vestor allowed to dynamically trade the underlying asset, and statically trade Euro-

pean call options for all possible strikes with some given maturity. This problem is

classically approached by means of the Skorohod Embedding Problem (SEP). Instead,

we provide a dual formulation which converts the superhedging problem into a contin-

uous martingale optimal transportation problem. We then show that this formulation

allows to recover previously known results about Lookback options. In particular, our

methodology induces a new presentation of the Azéma-Yor solution of the SEP.
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1 Introduction

In a financial market allowing for the dynamic trading of some given underlying assets

without restrictions, the fundamental theorem of asset pricing essentially states that the

absence of arbitrage opportunities is equivalent to the existence of a probability measure

under which the underlying asset process is a martingale. See Kreps [16], Harrison and

Pliska [12], and Delbaen and Schachermayer [8]. Then, for the purpose of hedging, the
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only relevant information is the quadratic variation of the assets price process under such a

martingale measure. Without any further assumption on the quadratic variation, the robust

superhedging cost reduces to an obvious bound which can be realized by static trading on

the underlying assets, see Cvitanić, Pham and Touzi [7] and Frey [11].

In this paper, we examine the problem of superhedging, under the condition of no-arbitrage,

when the financial market also allows for the static trading of European call options. For

simplicity, we consider the case where all available European call options have the same

maturity T . However, we idealize the financial market assuming that such European call

options are available for all possible strikes. Then any T−maturity vanilla derivative can

be perfectly replicated by a portfolio of European calls, and therefore has an un-ambiguous

no-arbitrage price in terms of the given prices of the underlying calls.

This problem is classically approached in the literature by means of the Skorohod Em-

bedding Problem (SEP) which shows up naturally due to the Dubins-Schwartz time change

result. The use of SEP techniques to solve the robust superhedging problem can be traced

back to Hobson [13]. The survey paper by Hobson [14] is very informative and contains the

relevant references on the subject.

In this paper, we develop an alternative approach which relates the robust superhedging

problem to the literature on stochastic control, see Fleming and Soner [10], and more specifi-

cally, optimal transportation. Our context opens the door to an original new ramification in

the theory of optimal transportation as it imposes naturally that the transportation be per-

formed along a continuous martingale. Our first main result, reported in subsections 2.3 and

2.4, provides a formulation of the robust superhedging problem based on the Kantorovich

duality in the spirit of Benamou and Brenier [4], see Villani [23].

We then specialize the discussion to Lookback derivatives. In this context, the robust

superhedging problem is known to be induced by the Azéma-Yor solution of the SEP [1, 2].

A semi-static hedging strategy corresponding to this bound was produced by Hobson [13].

Our second main result, reported in Section 3, reproduces this bound by means of our dual

formulation. In particular, this provides a new presentation of the Azéma-Yor solution of

the SEP. We also recover in Section 4 the robust superhedging cost for the forward Lookback

option which was also derived in Hobson [13].

2 Model-free bounds of derivatives securities

2.1 The probabilistic framework

Let Ω := {ω ∈ C([0, T ],Rd) : ω0 = 0} be the canonical space equipped with the uni-

form norm ‖ω‖∞ := sup0≤t≤T |ωt|, B the canonical process, P0 the Wiener measure, F :=

{Ft}0≤t≤T the filtration generated by B, and F+ := {F+
t , 0 ≤ t ≤ T} the right limit of F,
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where F+
t := ∩s>tFs.

Throughout the paper, X0 is some given initial value in Rd
+, and we denote

Xt := X0 +Bt for t ∈ [0, T ].

For all F−progressively measurable process α with values in S+
d (space of definite posi-

tive symmetric matrices) and satisfying
∫ T

0
|αs|ds < ∞, P0−a.s., we define the probability

measures on (Ω,F):

Pα := P0 ◦ (Xα)−1 where Xα
t := X0 +

∫ t

0

α1/2
r dBr, t ∈ [0, T ], P0 − a.s.

Then X is a Pα−local martingale. Following [21], we denote by PS the collection of all such

probability measures on (Ω,F). The quadratic variation process 〈X〉 = 〈B〉 is universally

defined under any P ∈ PS, and takes values in the set of all nondecreasing continuous

functions from R+ to S+
d . Moreover, for all P ∈ PS, the quadratic variation 〈B〉 is absolutely

continuous with respect to the Lebesgue measure. We denote its density by:

ât :=
d〈B〉t
dt

∈ S+
d , P− a.s. for all P ∈ PS.

Finally, we recall from [21] that

every P ∈ PS satisfies the Blumenthal zero-one law

and the martingale representation property.
(2.1)

In this paper, we shall focus on the subset P+
∞ of PS consisting of all measures P such that

X is a P− uniformly integrable martingale with values in Rd
+.

Definition 2.1 We say that a property holds quasi-surely (q.s.) if it holds P−a.s. for every

P ∈ P+
∞.

The restriction of the probability measures in P+
∞ to those induced by non-negative pro-

cesses X is motivated by our subsequent interpretation of the entries X i as price processes

of financial securities.

2.2 Model-free super-hedging problem

We first introduce the set portfolio strategies

Ĥ2
loc := ∩P∈P+

∞
H2

loc(P) where H2
loc(P) :=

{
H ∈ H0(P) :

∫ T
0
|â1/2
t Ht|2dt <∞, P− a.s.

}
.
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Under the self-financing condition, any H ∈ Ĥ2
loc induces the portfolio value process

Y H
t := Y0 +

∫ t

0

Hs · dBs, t ∈ [0, T ]. (2.2)

This stochastic integral is well-defined P−a.s. for every P ∈ P+
∞, and should be rather

denoted Y H
t

P
to emphasize its dependence on P. In general, it may not be possible to

aggregate the family {Y HP
,P ∈ P+

∞} into a universal process Y H such that Y H = Y HP
,

dt⊗ dP−a.s. for all P ∈ P+
∞. See [21] for a wide discussion of this question.

Finally, in order to avoid possible arbitrage opportunities which may be induced by dou-

bling strategies, we define the set of admissible strategies H by

H :=
{
H ∈ Ĥ2

loc : for all P ∈ P+
∞, Y

H ≥MP P− a.s. for some P−martingale MP
}
,

where the martingale MP may depend on P and the portfolio strategy H. Then, it follows

from (2.2) that

Y H is a P−local martingale and P−supermartingale, for all H ∈ H, P ∈ P+
∞. (2.3)

Let ξ be an FT−measurable random variable. The model-free superhedging problem is

defined by:

U0(ξ) := inf
{
Y0 : Y H

1 ≥ ξ, q.s. for some H ∈ H
}
. (2.4)

We call U0 the model-free superhedging bound, and we recall its interpretation as the no-

arbitrage upper bound on the market price of the derivative security ξ, for an investor who

has access to continuous-time trading the underlying securities with price process X.

2.3 Dual formulation of the super-hedging bound

We denote by UC(Ω) the collection of all uniformly continuous maps from ΩX0 to R, where

X0 ∈ (0,∞)d is a fixed initial value, and ΩX0 := {ω ∈ C([0, T ],Rd
+) : ω0 = X0}. The

following result is a direct adaptation from Soner, Touzi and Zhang [20]. We observe that

we may weaken the subsequent assumptions on the payoff function ξ, see Remarks 5.1 and

5.2 below. However, we do not pursue in this direction as the applications of this paper only

involve smooth payoffs.

Theorem 2.1 Let ξ ∈ UC(Ω) be such that ξ+ ∈ L1(P) for all P ∈ P+
∞. Then:

U0(ξ) = sup
P∈P∞

EP[ξ].

Assume further that U0(ξ) ∈ R. Then there exists a unique process H ∈ Ĥ2
loc and a unique

family of nondecreasing predictable processes {KP,P ∈ P+
∞}, with KP

0 = 0 for all P ∈ P+
∞,

such that:

ξ = U0(ξ) +

∫ 1

0

Ht · dBt −KP
1 , P− a.s. for all P ∈ P+

∞ . (2.5)
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The proof is reported in Section 5.

Remark 2.1 A similar dual representation as in Theorem 2.1 was first obtained by Denis

and Martini [9] in the bounded volatility case. Notice however that the family of non-

dominated singular measures in [9] is not included in our set PS, and does not allow for the

existence of an optimal super-hedging strategy.

2.4 Calibration adjusted no-arbitrage bound

In this section we specialize the discussion to the one-dimensional case. This is consistent

with the one-dimensional practical treatment of vanilla options on real financial markets.

We assume that, in addition to the continuous-time trading of the primitive securities,

the investor can take static positions on T−maturity European call or put options with all

possible strikes K ≥ 0. Then, from Breeden and Litzenberger [5], the investor can identify

that the T−marginal distribution of the underlying asset under the pricing measure is some

probability measure µ ∈M(R+), the set of all probability measures on R+.

For any scalar function λ ∈ L1(µ), the T−maturity European derivative defined by the

payoff λ(XT ) has an un-ambiguous no-arbitrage price

µ(λ) =

∫
λdµ,

and can be perfectly replicated by buying and holding a portfolio of down-and-in Arrows

of all strikes, with the density of Arrows λ(K) at strike K. See Carr and Chou [6]. In

particular, given the spot price X0 > 0 of the underlying assets, the probability measure µ

must satisfies: ∫
xµ(dx) = X0.

We now define an improvement of the no-arbitrage upper-bound by accounting for the

additional possibility of statically trading the European call options. Let

Λµ :=
{
λ ∈ L1(µ) : λ(XT )− ∈ ∩P∈P+

∞
L1(P)

}
and Λµ

UC := Λµ ∩ UC(R+). (2.6)

The improved no-arbitrage upper bound is defined by:

Uµ(ξ) := inf
{
Y0 : Y

H,λ

1 ≥ ξ, q.s. for some H ∈ H and λ ∈ Λµ
UC

}
, (2.7)

where Y
H,λ

denotes the portfolio value of a self-financing strategy with continuous trading

H in the primitive securities, and static trading λ in the T−maturity European calls with

all strikes:

Y
H,λ

1 := Y H
1 − µ(λ) + λ(XT ), (2.8)
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indicating that the investor has the possibility of buying at time 0 any derivative security

with payoff λ(XT ) for the price µ(λ).

The next result is a direct application of Theorem 2.1.

Proposition 2.1 Let ξ ∈ UC(Ω) be such that ξ+ ∈ L1(P) for all P ∈ P+
∞. Then, for all

µ ∈M(R+):

Uµ(ξ) = inf
λ∈ΛµUC

sup
P∈P+

∞

{
µ(λ) + EP[ξ − λ(XT )

]}
.

Proof Observe that

Uµ(ξ) = inf
λ∈ΛµUC

U0
(
ξ + µ(λ)− λ(XT )

)
.

For every fixed λ, if V (0) := supP∈P+
∞
EP[ξ + µ(λ) − λ(XT )] < ∞, then the previous proof

of Theorem 2.1 applies and we get U0
(
ξ + µ(λ) − λ(XT )

)
= V (0). On the other hand, if

V (0) = ∞, then notice from the proof of Theorem 2.1 that the inequality U0
(
ξ + µ(λ) −

λ(XT )
)
≥ V (0) is still valid in this case, and therefore U0

(
ξ + µ(λ)− λ(XT )

)
= V (0). 2

Remark 2.2 As a sanity check, let us consider the case ξ = g(XT ), for some uniformly

continuous function g with µ(|g|) <∞ and EP[g(XT )] <∞ for all P ∈ P+
∞, and let us verify

that Uµ(ξ) = µ(g).

First, since g ∈ Λµ
UC, it follows from the dual formulation of Proposition 2.1 that Uµ(ξ) ≤

µ(g). On the other hand, it is easily seen that

sup
P∈P+

∞

EP[g(XT )] = gconc(X0),

where gconc is the smallest concave majorant of g. Then, it follows from the dual formulation

of Proposition 2.1 that Uµ(ξ) = infλ∈ΛµUC
µ(λ)+(g−λ)conc(X0) ≥ infλ∈ΛµUC

µ(λ)+µ(g−λ) =

µ(g) as expected.

2.5 Connection with optimal transportation theory

As an alternative point of view, one may directly imbed in the no-arbitrage bounds the

calibration constraint that the risk neutral marginal distribution of BT is given by µ.

For convenience of comparison with the optimal transportation theory, the discussion of

this subsection will be focused on the no-arbitrage lower bound. A natural formulation of

the calibration adjusted no-arbitrage lower bound is:

`(ξ, µ) := inf
{
EP[ξ] : P ∈ P+

∞, X0 ∼P δX0 , and XT ∼P µ
}
. (2.9)

6



where δX0 denotes the Dirac mass at the point X0. We observe that a direct proof that `(ξ, µ)

coincides with the corresponding sub-hedging cost is not obvious in the present context.

Under this form, the problem appears as minimizing the coupling criterion EP[ξ] which

involves the law of the process X under P, over all those probability measures P ∈ P+
∞ such

that the marginal distributions of X at times 0 and T are fixed. This is the general scope of

optimal transportation problems as introduced by Monge and Kantorovitch, see e.g. Villani

[23] and Mikami and Thieulen [17]. Motivated by the present financial application, Tan

and Touzi [22] extended the Kantorovitch duality as described below. However, the above

problem `(ξ, µ) does not satisfy the assumptions in [22] so that none of the results contained

in this literature apply to our context.

The classical approach in optimal transportation consists in deriving a dual formulation

for the problem (2.9) by means of the classical convex duality theory. Recall that M(R+)

denotes the collection of all probability measures on R+. Then, the Legendre dual with

respect to µ is defined by

`∗(ξ, λ) := sup
µ∈M(R+)

{λ(µ)− `(ξ, µ)} for all λ ∈ C0
b (R+)

the set of all bounded continuous functions from R+ to R. Direct calculation shows that:

`∗(ξ, λ) = sup
{
EP[λ(XT )− ξ] : µ ∈M(R+), P ∈ P+

∞ , X0 ∼P δX0 , and XT ∼P µ
}

= sup
{
EP[λ(XT )− ξ] : P ∈ P+

∞ , X0 ∼P δX0

}
.

Observe that the latter problem is a standard (singular) diffusion control problem.

It is easily checked that ` is convex in µ. However, due to the absence of a uniform

bound on the quadratic variation of X under P ∈ P+
∞, it is not obvious whether it is lower

semicontinuous with respect to µ. If the latter property were true, then the equality `∗∗ = `

provides

`(ξ, µ) = sup
λ∈C0

b

{µ(λ)− `∗(ξ, λ)} ,

which is formally (up to the spaces choices) the lower bound analogue of the dual formulation

of Proposition 2.1. A discrete-time analysis of this duality is contained in the parallel work

to the present one by Beiglböck, Henry-labordère and Penkner [3].

3 Application to lookback derivatives

In this section, we consider derivative securities defined by the lookback payoff:

ξ = g (X∗T ) , where X∗T := max
t≤T

Xt, (3.1)
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and

g : R+ −→ R+ is a nondecreasing C1 function (3.2)

Our main interest is to show that the optimal upper bound given by Proposition 2.1:

Uµ(ξ) = inf
λ∈ΛµUC

{
µ(λ) + uλ(0, X0, X0)

}
reproduces the already known bound corresponding to the Azema-Yor solution to the Skoro-

hod embedding problem. Here, uλ is the value function of the dynamic version of stochastic

control problem

uλ(t, x,m) := sup
P∈P+

∞

EP
[
g
(
M t,x,m

T )− λ(X t,x
T )
]
, t ≤ T, (x,m) ∈∆, (3.3)

where ∆ :=
{

(x,m) ∈ R2
+ : x ≤ m

}
, and

X t,x
u := x+ (Bu −Bt), M t,x,m

u := m ∨ max
t≤r≤u

X t,x
r , 0 ≤ t ≤ u ≤ T.

When the time origin is zero, we shall simply write Xx
u := X0,x

u and Mx,m
u := M0,x,m

u .

In the present context, the Markovian feature of the problem allows for an easy extension

of the dual formulation of Proposition 2.1:

Uµ(ξ) = inf
λ∈Λµ

{
µ(λ) + uλ(0, X0, X0)

}
(3.4)

where Λµ is defined in (2.6), see Remark 5.1.

3.1 Formulation in terms of optimal stopping

We first convert the optimization problem uλ into an infinite horizon optimal stopping

problem.

Proposition 3.1 For any λ ∈ Λµ, the functions uλ is independent of t and:

uλ(x,m) = sup
τ∈T +
∞

EP0
[
g(Mx,m

τ )− λ(Xx
τ )
]

for all (x,m) ∈∆, (3.5)

where T +
∞ is the collection of all stopping times τ such that the stopped process {Xt∧τ , t ≥ 0}

is a non-negative P0−uniformly integrable martingale.

Proof From the regularity of g and λ, we may write the stochastic control problem (3.3)

in its strong formulation

Uλ(t, x,m) := sup
σ

EP0

[
g
(
Mσ,t,x,m

T

)
− λ(Xσ,t,x

T )|(Xσ,t,x
t ,Mσ,t,x,m

t ) = (x,m)
]
,
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where

Xσ,t,x
s = x+

∫ s

t

σrdBr, Mσ,t,x,m
s := m ∨ max

t≤r≤s
Xσ,t,x
r , 0 ≤ t ≤ s ≤ T,

and σ ranges in the set of all nonnegative processes H2(P0) and such that the process

{Xσ,t,x
s , t ≤ s ≤ T} is a non-negative uniformly integrable martingale. Then, the required

result is a direct consequence of the Dubins-Schwartz time change for martingales in the

Brownian filtration. 2

In view of the previous results, we are reduced to the problem:

Uµ(ξ) := inf
λ∈Λµ0

{
µ(λ) + uλ(X0, X0)

}
, (3.6)

where:

uλ(X0, X0) := sup
τ∈T +

∞

J(λ, τ), J(λ, τ) := EP0

[
g(X∗τ )− λ(Xτ )

]
.

and the set Λµ of (2.6) translates in the present context to:

Λµ
0 =

{
λ ∈ L1(µ) : λ(Xτ )

− ∈ L1(P0) for all τ ∈ T +
∞
}
. (3.7)

3.2 The main result

The endpoints of the support of the distribution µ are denoted by:

`µ := sup
{
x : µ

(
[x,∞)

)
= 1
}

and rµ := inf
{
x : µ

(
(x,∞)

)
= 0
}

The Azéma-Yor solution of the Skorohod Embedding Problem is defined by means of the

so-called barycenter function:

b(x) :=

∫∞
x
yµ(dy)

µ
(
[x,∞)

) 1{x<rµ} + x 1{x≥rµ} x ≥ 0. (3.8)

Remark 3.1 D. Hobson [13] observed that the barycenter function can be alternatively

defined as the right-continuous inverse to the following function β. Given the European

calls prices c(x) :=
∫

(y − x)+µ(dy) and X0 =
∫
yµ(dy), define the function

β(x) := max
{

argminy<x
c(y)
x−y

}
for x ∈ [X0, r

µ), (3.9)

β(x) = 0 for x ∈ [0, `µ) and β(x) = x for x ∈ [rµ,∞). (3.10)

On [X0, r
µ), β(x) is the largest minimizer of the function y 7−→ c(y)/(x − y) on (0, x).

Then, β is nondecreasing, right-continuous, and β(x) < x for all x ∈ [X0, r
µ]. Notice that

β(X0) = `µ := sup{x : µ
(
(0, x]

)
> 0}.
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The following result is a combination of [13] and [19]. Our objective is to derive it directly

from the dual formulation of Proposition 2.1. Let

τ ∗ := inf
{
t > 0 : X∗t ≥ b(Xt)

}
, (3.11)

and

λ∗(x) :=

∫ x

0

∫ y

0

g′
(
b(ξ)

) µ(dξ)

µ
(
[ξ,∞)

)dy; 0 ≤ x < rµ. (3.12)

Notice that λ∗ ∈ [0,∞] as the integral of a nonnegative function. To see that λ∗ < ∞, we

compute by the Fubini theorem that:

λ∗(x) =

∫ x

0

(x− ξ)g′
(
b(ξ)

) µ(dξ)

µ
(
[ξ,∞)

) ,
so that the finiteness of λ∗ is implied by that of its majorant

∫ x
0
g′
(
b(ξ)

)
µ(dξ)/µ

(
[ξ,∞)

)
, for

which we directly compute that it is equivalent to∫ x

0

g′(X0)
µ(dξ)

µ
(
[ξ,∞)

) = −g′(X0) lnµ
(
[x,∞)

)
<∞ for all x ∈ [0, rµ).

Theorem 3.1 Let ξ be given by (3.1) for some nondecreasing C1 payoff function g, and

µ ∈M(R+) be such that µ(g ◦ b) <∞. Then:

Uµ(ξ) = µ(λ∗) + J(λ∗, τ ∗) = µ(g ◦ b).

The proof is reported in the subsequent subsection.

3.3 An upper bound for the optimal upper bound

In this section, we prove that:

Uµ(ξ) ≤ µ(λ∗) + J(λ∗, τ ∗). (3.13)

Our first step is to use the following construction due to Peskir [19] which provides a guess

of the value function uλ for functions λ in the subset:

Λ̂µ
0 := {λ ∈ Λµ

0 : λ is convex}. (3.14)

By classical tools from stochastic control theory, the value function uλ(x,m) is expected to

solve the dynamic programming equation:

min
{
uλ − g + λ,−uλxx

}
= 0 on ∆ and uλm(m,m) = 0 for m ≥ 0. (3.15)
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The first part of the above DPE is an ODE for which m appear only as a parameter involved

in the domain on which the ODE must hold. Since we are restricting to convex λ, one can

guess a solution of the form:

vψ(x,m) := g(m)− λ
(
x ∧ ψ(m)

)
− λ′

(
ψ(m)

)(
x− x ∧ ψ(m)

)
, (3.16)

i.e. vψ(x,m) = g(m)− λ(x) for x ∈ [0, ψ(m)] and is given by the tangent at the point ψ(m)

for x ∈ [ψ(m),∞). For later use, we observe that

vψ(x,m) = g(m)− λ(ψ(m))−
∫ x

ψ(m)

∂

∂y
{λ′(y)(x− y)}dy

= g(m)− λ(x)−
∫ x

ψ(m)

(x− y)λ′′(dy) for x ≥ ψ(m), (3.17)

where λ′′ is the second derivative measure of the convex function λ.

We next choose the function ψ in order to satisfy the Neumann condition in (3.15). As-

suming that λ is smooth, we obtain by direct calculation that the free boundary ψ must

verify the ordinary differential equation (ODE):

λ′′
(
ψ(m)

)
ψ′(m) =

g′(m)

m− ψ(m)
for all m ≥ 0. (3.18)

For technical reasons, we need to consider this ODE in the relaxed sense. This contrasts

our analysis with that of Peskir [19] and Obloj [18]. Since λ is convex, its second derivative

λ′′ is well-defined as measure on R+. We then introduce the weak formulation of the ODE

(3.18): ∫
ψ(B)

λ′′(dy) =

∫
B

g′(m)

m− ψ(m)
dm for all B ∈ B(R+), (3.19)

and we introduce the collection of all relaxed solutions of (3.18):

Ψλ :=
{
ψ right-continuous : (3.19) holds and ψ(x) < x for all x ≥ 0

}
. (3.20)

Remark 3.2 For later use, we observe that (3.19) implies the all functions ψ ∈ Ψλ are

non-decreasing, and by direct integration that

the function x 7−→ λ(x)−
∫ x
X0

∫ ψ−1(y)

X0

g′(ξ)
ξ−ψ(ξ)

dξdy is affine,

where ψ−1 is the right-continuous inverse of ψ. This follows from direct differentiation of

the above function in the sense of generalized derivatives.

A remarkable feature of the present problem is that there is no natural boundary condition

for the ODE (3.18) or its relaxation (3.19). The following result extends the easy part of

the elegant maximality principle proved in Peskir [19] by allowing for possibly nonsmooth

functions λ. We emphasize the fact that our approach does not need the full strength of

Peskir’s maximality principle.
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Lemma 3.1 Let λ ∈ Λ̂µ
0 and ψ ∈ Ψλ be arbitrary. Then uλ ≤ vψ.

Proof We organize the proof in three steps.

1. We first prove that vψ is differentiable in m on the diagonal with

vψm(m,m) = 0 for all m ≥ 0. (3.21)

Indeed, since ψ ∈ Ψλ, it follows from Remark 3.2 that

λ(x) = c0 + c1x+

∫ x

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξdy

for some scalar constants c0, c1. Plugging this expression into (3.16), we see that:

vψ(x,m) = g(m)−
(
c0 + c1ψ(m) +

∫ ψ(m)

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξdy

)
−
(
c1 +

∫ m

X0

g′(ξ)

ξ − ψ(ξ)
dξ
)(
x− ψ(m)

)
= g(m)− c0 − c1x+

∫ m

X0

g′(ξ)

ξ − ψ(ξ)
(ψ(ξ)− x)dξ,

where the last equality follows from the Fubini Theorem together with the fact that g is

nondecreasing and ψ(ξ) < ξ. Since g is differentiable, (3.21) follows by direct differentiation

with respect to m.

2. For an arbitrary stopping time τ ∈ T +
∞ , we introduce the stopping times τn := τ ∧ inf{t >

0 : |Xt−x| > n}. Since vψ is concave in x, as a consequence of the convexity of λ, it follows

from the Itô-Tanaka formula that:

vψ(x,m) ≥ vψ(Xτn ,Mτn)−
∫ τn

0

vψx (Xt,Mt)dBt −
∫ τn

0

vψm(Xt,Mt)dMt

≥ g(Mτn)− λ(Xτn)−
∫ τn

0

vψx (Xt,Mt)dBt −
∫ τn

0

vψm(Xt,Mt)dMt

by the fact that vψ ≥ g − λ. Notice that (Mt − Xt)dMt = 0. Then by the Neumann

condition (3.21), we have vψm(Xt,Mt)dMt = vψm(Mt,Mt)dMt = 0. Taking expectations in

the last inequality, we see that:

vψ(x,m) ≥ Ex,m [g(Mτn)− λ(Xτn)] . (3.22)

3. We finally take the limit as n → ∞ in the last inequality. First, recall that (Xt∧τ )t≥0 is

a uniformly integrable martingale. Then, by the Jensen inequality, λ(Xτn) ≥ E[λ(Xτ )|Fτn ].

Since λ(Xτ )
− ∈ L1(P0), this implies that E[λ(Xτn)] ≥ E[λ(Xτ )] where we also used the

tower property of conditional expectations. We then deduce from (3.22) that

vψ(x,m) ≥ lim
n→∞

Ex,m [g(Mτn)− λ(Xτ )] = Ex,m [g(Mτ )− λ(Xτ )]

12



by the nondecrease of the process M and the function g together with the monotone con-

vergence theorem. By the arbitrariness of τ ∈ T +
∞ , the last inequality shows that vψ ≥ uλ.

2

Our next result involves the function:

ϕ(x,m) :=
c(x)− c0(x)1m<X0

m− x
with c0(x) := (X0 − x)+, 0 ≤ x < m, (3.23)

and we recall that c(x) :=
∫

(ξ − x)+µ(dξ) is the (given) European call price with strike x.

Lemma 3.2 For λ ∈ Λ̂µ
0 and ψ ∈ Ψλ, we have:

µ(λ) + uλ(X0, X0) ≤ g(X0) +

∫
ϕ
(
ψ(m),m

)
g′(m)dm.

Proof 1. Let α ∈ R+ be an arbitrary point of differentiability of λ. Then

λ(x) = λ(α) + λ′(α)(x− α) +

∫ x

α

(x− y)λ′′(dy).

Integrating with respect to µ− δX0 and taking α < X0, this provides

µ(λ)− λ(X0) = λ′(α)
(∫

xµ(dx)−X0

)
+

∫ (∫ x

α

(x− y)λ′′(dy)
)

(µ− δX0)(dx)

= −
∫ x

α

(X0 − y)λ′′(dy) +

∫
1{x≥α}

∫ x

α

(x− y)+λ′′(dy) µ(dx)

+

∫
1{x<α}

∫ α

x

(y − x)λ′′(dy) µ(dx).

Then sending α to 0, it follows from the convexity of λ together with the monotone conver-

gence theorem that

µ(λ)− λ(X0) =

∫
(c− c0)(y)λ′′(dy).

2. By the inequality in Lemma 3.1 together with (3.17), we now compute that:

µ(λ) + uλ(X0, X0) ≤ g(X0) +

∫ (
c(y)− c0(y)(1{y<X0} − 1{ψ(X0)<y<X0})

)
λ′′(dy)

= g(X0) +

∫ (
c(y)− c0(y)1{y<ψ(X0)}

)
λ′′(dy).

We next use the ODE (3.18) satisfied by ψ in the distribution sense. This provides:

µ(λ) + uλ(X0, X0) ≤ g(X0) +

∫
c(ψ(m))− c0(ψ(m))1{m<X0}

m− ψ(m)
g′(m)dm.

Here, we observe that the endpoints in the last integral can be taken to 0 and ∞ by the

non-negativity of the integrand. 2

We now have all ingredients to express the upper bound (3.13) explicitly in terms of the

barycenter function b of (3.8).

13



Lemma 3.3 For a nondecreasing C1 payoff function g, we have:

inf
λ∈Λµ0

{
µ(λ) + uλ(X0, X0)

}
≤ µ(g ◦ b).

Proof Since Λ̂µ
0 ⊂ Λµ

0 , we compute from Lemma 3.2 that

inf
λ∈Λµ0

{
µ(λ) + uλ(X0, X0)

}
≤ inf

λ∈Λ̂µ0

{
µ(λ) + uλ(X0, X0)

}
≤ g(X0) + inf

λ∈Λ̂µ0

inf
ψ∈Ψλ

∫
ϕ
(
ψ(m),m

)
g′(m)dm (3.24)

In the next two steps, we prove that the last minimization problem on the right hand-side

of (3.24) can be solved by pointwise minimization inside the integral. Then, in Step 3, we

compute the induced upper bound.

1. For all λ ∈ Λ̂µ
0 and ψ ∈ Ψλ:∫

ϕ
(
ψ(m),m

)
g′(m)dm ≥

∫
inf
ξ<m

ϕ
(
ξ,m

)
g′(m)dm

Observe that c(x) ≥ c0(x) for all x ≥ 0, and limx→0 c(x)− c0(x) = 0. Then

inf
ξ<m

ϕ(ξ,m) = ϕ(0,m) = 0 for m < X0. (3.25)

On the other hand, it follows from Remark 3.1 that:

inf
ξ<m

ϕ(ξ,m) = inf
ξ<m

c(ξ)

m− ξ
=

c
(
β(m)

)
m− β(m)

for m ≥ X0. (3.26)

By (3.25) and (3.26), we obtain the lower bound:∫
ϕ
(
ψ(m),m

)
g′(m)dm ≥

∫
ϕ
(
β(m),m

)
g′(m)dm.

2. We now observe that the function β, obtained by pointwise minimization in the previous

step, solves the ODE (3.19). Therefore, in order to conclude the proof, it remains to verify

that λ∗ ∈ Λ̂µ
0 . The convexity of λ∗ is obvious. Also, since λ∗ ≥ 0, we only need to prove

that λ∗ ∈ L1(µ). From the expressions of λ∗ and b in (3.12) and (3.8), we compute that

µ(λ∗) =

∫ ∞
0

g′(b(ξ))(b(ξ)− ξ)µ(dξ)

=

∫ ∞
0

g′(b(ξ))

∫ ∞
ξ

µ(dx)db(ξ)

=

∫ ∞
0

(
g ◦ b(x)− g ◦ b(0)

)
µ(dx) =

∫ ∞
0

(
g(b(x))− g(X0)

)
µ(dx)
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by the Fubini theorem. hence the condition µ(g ◦ b) < ∞ is the precise translation of the

integrability of λ∗ with respect to µ.

3. From (3.24) and the previous two steps, we have:

inf
λ∈Λµ0

{
µ(λ) + uλ(X0, X0)

}
≤ g(X0) +

∫ ∞
X0

c(β(x))

x− β(x)
g′(x)dx

= g(X0) +

∫ ∞
0

c(y)

b(y)− y
g′(b(y))db(y)

= g(X0) +

∫ ∞
0

g′(b(y))(b(y)− y)µ(dy) = µ(g ◦ b),

where we used the fact that c(y) =
∫∞
y

(ξ − y)µ(dξ) together with the calculation in Step 2.

2

3.4 Proof of Theorem 3.1

To complete the proof of the theorem, it remains to prove that

inf
λ∈Λµ0

{
µ(λ) + uλ(X0, X0)

}
≥ µ(g ◦ b).

To see this, we use the fact that the stopping time τ ∗ defined in (3.11) is a solution of

the Skorohod embedding problem, i.e. Xτ∗ ∼ µ and (Xt∧τ∗)t≥0 is a uniformly integrable

martingale, see Azéma and Yor [1, 2]. Then, for all λ ∈ Λµ
0 , it follows from the definition of

uλ that uλ(X0, X0) ≥ J(λ, τ ∗), and therefore:

µ(λ) + uλ(X0, X0) ≥ µ(λ) + EX0,X0

[
g(X∗τ∗)− λ(Xτ∗)

]
= EX0,X0

[
g(X∗τ∗)

]
.

By the definition of τ ∗, we have X∗τ∗ = b(Xτ∗). since Xτ∗ ∼ µ, this provides:

µ(λ) + uλ(X0, X0) ≥ EX0,X0

[
g ◦ b(Xτ∗)

]
= µ(g ◦ b).

4 Forward start lookback options

In this section, we provide a second application to the case where the derivative security is

defined by the payoff

ξ = g
(
B∗t1,t2

)
where B∗t1,t2 := max

t1≤t≤t2
Bt,

and g satisfies the same conditions as in the previous section. We assume that the prices of

call options c1(k) and c2(k) for the maturities t1 and t2 are given for all strikes:

c1(k) =

∫
(x− k)+µ1(dx) and c2(k) =

∫
(x− k)+µ2(dx), k ≥ 0.

15



We also assume that µ1 � µ2 are in convex order:

c1(0) = c2(0) and c1(k) ≤ c2(k) for all k ≥ 0.

The model-free superhedging cost is defined as the minimal initial capital which allows to

superhedge the payoff ξ, quasi-surely, by means of some dynamic trading strategy in the

underlying stock, and a static strategy in the calls (c1(k))k≥0 and (c2(k))k≥0.

This problem was solved in Hobson [13] in the case g(x) = x. Our objective here is to

recover his results by means of our simple stochastic control approach.

A direct adaptation of Proposition 2.1 provides the dual formulation of this problem as:

Uµ1,µ2(ξ) = sup
(λ1,λ2)∈Λµ1×Λµ2

µ1(λ1) + µ2(λ2) + uλ1,λ2(X0, X0),

where

uλ1,λ2(x,m) := sup
P∈P+

∞

EP
x,m

[
g(B∗t1,t2)− λ1(Bt1)− λ2(Bt2)

]
,

We next observe that the dynamic value function corresponding to the stochastic control

problem uλ1,λ2 reduces to our previously studied problem uλ2 at time t1. Then, it follows

from the dynamic programming principle that:

Uµ1,µ2(ξ) = inf
(λ1,λ2)∈Λµ1×Λµ2

µ1(λ1) + µ2(λ2) + sup
P∈P∞

EP[uλ2(Bt1 , Bt1)− λ1(Bt1)
]
.

Since the expression to be maximized only involves the distribution of Bt1 , it follows from

Remark 2.2 together with the Dubins-Schwartz time change formula that:

Uµ1,µ2(ξ) = inf
λ2∈Λ

µ2
0

µ2(λ2) +

∫
uλ2(x, x)µ1(dx),

We next obtain an upper bound by restricting attention to the subset Λ̂µ2
0 of convex mul-

tipliers of Λµ2
0 . For such multipliers, we use the inequality uλ2 ≤ vψ2 for all ψ2 ∈ Ψλ2 as

derived in Lemma 3.1. This provides:

Uµ1,µ2(ξ) ≤ inf
λ2∈Λ̂

µ2
0

µ2(λ2) +

∫
vψ2(x, x)µ1(dx)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

µ2(λ2)− µ1(λ2) +

∫ ∞
0

∫ x

ψ2(x)

(x− y)λ′′2(dy)µ1(dx)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫ ∞
0

(
c2(y)− c1(y) +

∫
(x− y)1{ψ2(x)<y<x}µ1(dx)

)
λ′′2(dy)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫ ∞
0

(
c2(y)−

∫
(x− y)1{y≤ψ2(x)}µ1(dx)

)
λ′′2(dy)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫ ∞
0

(
c2(ψ2(m))−

∫
(x− ψ2(m))1{m≤x}µ1(dx)

) g′(m)dm

m− ψ2(m)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫(c2

(
ψ2(m)

)
− c1(m)

m− ψ2(m)
− µ1

(
[m,∞)

))
g′(m)dm
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where the last equalities follow from similar manipulations as in Lemma 3.2, and in particular

make use of the ODE (3.19). Since g′ ≥ 0, we may prove, as in the case of Lookback options,

that the above minimization problem reduces to the pointwise minimization of the integrand,

so that the optimal obstacle is given by:

ψ∗2(x) = max
{

Arg min
ξ<x

h(ξ)
}

where h(ξ) :=
c2(ξ)− c1(m)

m− ξ
, ξ < m,

Notice that h has left and right derivative at every ξ < m, with

h′(ξ) =
c2(ξ) + (x− ξ)c′2(ξ)− c1(x)

(x− ξ)2
, a.e.

where the numerator is a non-decreasing function of ξ, takes the positive value c2(x)− c1(x)

at ξ = x, and takes the negative value X0 − x − c1(x) at ξ = 0. Then ψ∗2(x) is the largest

root of the equation:

c2

(
ψ∗2(x)

)
+
(
x− ψ∗2(x)

)
c′2
(
ψ∗2(x)

)
= c1(x), a.e. (4.1)

so that h is nonincreasing to the left of ψ∗2(m) and nondecreasing to its right.

At this point, we recognize exactly the solution derived by Hobson [13]. In particular, ψ∗2
induces a solution τ ∗2 to the Skorohod embedding problem, and we may use the expression of

uλ2 as the value function of an optimal stopping problem. Then, we may conclude the proof

that the upper bound derived above is the optimal upper bound by arguing as in Section

3.4 that:

uλ2(x, x) ≥ Ex,x
[
g(X∗τ∗2 )− λ2(Xτ∗2

)
]
.

We get that the upper bound is given by:

Uµ1,µ2(ξ) = µ1(g)−
∫
g′(m)µ1

(
[m,∞)

)
dm+

∫ (c2

(
ψ∗2(m)

)
− c1(m)

m− ψ∗2(m)

)
g′(x)dx

= µ1(g)−
∫ (

c′2
(
ψ∗2(m)

)
− c′1(m)

)
g′(m)dm

= g(0)−
∫
c′2
(
ψ∗2(m)

)
g′(m)dm (4.2)

by (4.1).

5 Proof of the duality result

Let ξ : Ω −→ R be a measurable map with ξ+ ∈ L1(P) for all P ∈ P+
∞. Then EP[ξ] ∈

R ∪ {−∞} is well defined. Let X0 ∈ R be such that

XH
1 ≥ ξ for some H ∈ H. (5.1)
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By definition of the admissibility set H, it follows that the process XH is a P−local martin-

gale and a P−supermartingale for any P ∈ P∞. Then, it follows from (5.1) that X0 ≥ EP[ξ]

for all P ∈ P∞. From the arbitrariness of X0 and P, this shows that

U0(ξ) ≥ sup
P∈P+

∞

EP[ξ]. (5.2)

In the subsequent subsections, we prove that the converse inequality holds under the ad-

ditional requirement that ξ ∈ UC(Ω). In view of (5.2), it only remains to consider the

case

sup
P∈P+

∞

EP[ξ] < ∞. (5.3)

Following [20], this result is obtained by introducing a dynamic version of the problem

which is then proved to have a decomposition leading to the required result. Due to the

fact that family of probability measures P+
∞ is non-dominated, we need to define conditional

distributions on all of the probability space without excepting any zero measure set.

5.1 Regular conditional probability distribution

Let P be an arbitrary probability measure on Ω, and τ be an F−stopping time. The regular

conditional probability distribution (r.c.p.d.) Pωτ is defined by

- For all ω ∈ Ω, Pωτ is a probability measure on F1,

- For all E ∈ F1, the mapping ω 7−→ Pωτ (E) is Fτ−measurable,

- For every bounded F1-measurable random variable ξ, we have EP[ξ|Fτ ](ω) = EPωτ [ξ], P−a.s.

- For all ω ∈ Ω, Pωτ
[
ω′ ∈ Ω : ω′(s) = ω(s), 0 ≤ s ≤ τ(ω)

]
= 1.

The existence of the r.c.p.d. is justified in Stroock and Varadhan [24]. For a better

understanding of this notion, we introduce the shifted canonical space

Ωt := {ω ∈ C([t, 1],Rd) : ω(t) = 0} for all t ∈ [0, 1],

we denote by Bt the shifted canonical process on Ωt, Pt0 the shifted Wiener measure, and Ft

the shifted filtration generated by Bt. For 0 ≤ s ≤ t ≤ 1 and ω ∈ Ωs:

- the shifted path ωt ∈ Ωt is defined by:

ωtr := ωr − ωt for all r ∈ [t, 1],

- the concatenation path ω ⊗t ω̃ ∈ Ωs, for some ω̃ ∈ Ωt, is defined by:

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r)1[t,1](r) for all r ∈ [s, 1].

- the shifted F t1− measurable r.v. ξt,ω of some F s1−measurable r.v. ξ on Ωs is defined by:

ξt,ω(ω̃) := ξ(ω ⊗t ω̃) for all ω̃ ∈ Ωt.
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Similarly, for an Fs−progressively measurable processX on [s, 1], the shifted process {X t,ω
r , r ∈

[t, 1]} is Ft−progressively measurable.

For notational simplicity, we set:

ω ⊗τ ω̃ := ω ⊗τ(ω) ω̃, ξτ,ω := ξτ(ω),ω, Xτ,ω := Xτ(ω),ω.

The r.c.p.d. Pωτ induces a probability measure Pτ,ω on F τ(ω)
1 such that the Pτ,ω−distribution

of Bτ(ω) is equal to the Pωτ−distribution of {Bt−Bτ(ω), t ∈ [τ(ω), 1]}. Then, the r.c.p.d. can

be understood by the identity:

EPωτ [ξ] = EPτ,ω [ξτ,ω] for all F1 −measurabler.v. ξ.

We shall also call Pτ,ω the r.c.p.d. of P.

For 0 ≤ t ≤ 1, we follow the same construction as in Section 2.1 to define the martin-

gale measures Pt,α for each Ft−progressively measurable S>0
d −valued process α such that∫ 1

t
|αr|dr < ∞, Pt0−a.s. The collection of all such measures is denoted P tS. The subset P t∞

and the density process ât of the quadratic variation process 〈Bt〉 are also defined similarly.

5.2 The duality result for uniformly continuous payoffs

Since ξ ∈ UC(Ω), there exists a modulus of continuity function ρ such that for all t ∈ [0, 1]

and ω, ω′ ∈ Ω, ω̃ ∈ Ωt, ∣∣ξt,ω(ω̃)− ξt,ω′(ω̃)
∣∣ ≤ ρ(‖ω − ω′‖t),

where ‖ω‖t := sup0≤s≤t |ωs|, 0 ≤ t ≤ 1. The main object in the present proof is the following

dynamic value process

Vt(ω) := sup
P∈Pt∞

EPωt [ξ] for all (t, ω) ∈ [0, 1]× Ω. (5.4)

It follows from the uniform integrability property of ξ that

{Vt, t ∈ [0, 1]} is a right-continuous F−adapted process (5.5)

Moreover, by following exactly the proof of Proposition 4.7 in [20], we see that {Vt, t ∈ [0, 1]}
satisfies the dynamic programming principle:

Vt(ω) = sup
P∈P+

∞

EPωt [Vs] for all 0 ≤ t ≤ s ≤ 1 and ω ∈ Ω. (5.6)

Then, for all P ∈ P+
∞, the process {Vt, t ∈ [0, 1]} is a P−supermartingale. By the Doob-

Meyer decomposition, there exists a pair of processes (HP, KP), with HP ∈ H2
loc(P) and KP

P−integrable nondecreasing, such that

Vt = V0 +

∫ t

0

HP
s dBs −KP

t , t ∈ [0, 1], P− a.s.
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Since V is a right-continuous semimartingale under each P ∈ P+
∞, it follows from Karandikar

[15] that the family of processes {HP,P ∈ P+
∞} (defined P−a.s.) can be aggregated into a

process Ĥ defined on [0, 1]×Ω by d〈V,B〉t = Ĥtd〈B〉t, in the sense that Ĥ = HP, dt×dP−a.s.

for all P ∈ P+
∞. Thus we have

Vt = V0 +

∫ t

0

ĤsdBs −KP
t , t ∈ [0, 1], P− a.s. for all P ∈ P+

∞.

With X0 := V0, we see that

- the process XĤ := X0 +
∫ .

0
ĤsdBs is bounded from below by V which is in turn bounded

from below by MP
t := EP

t [ξ], t ∈ [0, 1]; under (5.3) and the lower bound on ξ, the latter is a

P−martingale,

- and XĤ
1 = V1 +KP

1 = ξ +KP
1 ≥ ξ, P−a.s. for every P ∈ P+

∞.

Then V0 ≥ U0(ξ) by the definition of U0.

Notice that, as a consequence of the supermartingale property of XĤ under every P ∈ P+
∞,

we have:

V0 + sup
P∈P∞

EP[−KP
1

]
≥ sup

P∈P∞
EP[XĤ

1 −KP
1

]
= sup

P∈P∞
EP[ξ] = V0.

Since KP
0 = 0 and KP is nondecreasing, this implies that

XĤ is a P−martingale for all P ∈ P+
∞,

and the nondecreasing process KP satisfies the minimality condition

inf
P∈P+

∞

EP[KP
1

]
= 0.

Remark 5.1 A possible extension of Theorem 2.1 can be obtained for a larger class of

payoff functions ξ. Indeed, notice that the uniform continuity assumption on ξ is only used

to obtain properties (5.5) and (5.6) of the dynamic value process V defined in (5.4). In the

context of the application of Section 3, a verification argument allows to express Vt explicitly

as a smooth function of Bt and B∗t . Then (5.5) and (5.6) hold true even if ξ is not uniformly

continuous.

Remark 5.2 Another extension of Theorem 2.1 can be obtained by considering the closure

of UC(Ω) with respect to a convenient norm. Since the applications of this paper only involve

smooth payoffs, we do not pursue in this direction, and we refer the interested reader to [20].
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Future sponsored by the Fédération Bancaire Française, the Chair Finance and Sustainable

Development sponsored by EDF and CA-CIB.

20



References
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