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Announcements

� Rescheduled class will be held next Tuesday on April
16 8am-10am.
Location is bâtiment A (27, rue Saint-Guillaume)
Room 32.

� A 90mn exam will take place during last lecture on
April 17, 8am-9.30am. Only handouts distributed in
class and handwritten notes will be allowed.



1 Introduction

Econometrics of the marriage market: a few socio-economic
variables (education, age, income, race, wealth, some-
times biometric data...) and a lot of unobserved hetero-
geneity both in terms of characteristics and in taste.

One would like to understand how the market clears in
order to examine sociological theories (endogamy, as-
sortativeness, transmission of social capital...) or eco-
nomic/public policy issues (eg. impact on divorce law on
gender inequality).

Revealed preference problem: What do observed mar-
riage patterns reveal about mutual preferences of part-
ners? What is the surplus of both partners at equilib-
rium?

In other words, how to identify matching surpluses based
on observed actual marriages?



Beyond marriage, the analysis also extends to other match-
ing settings, such as e.g. the market of CEOs. What are
the complementarities between �rm and CEO�s charac-
teristics?



The framework is a matching model with transferable
utility and unobserved heterogeneity. The object of in-
terest is the joint surplus generated by a match between
two partner types.

� We observe: socio-economic, sometimes biometric
data on observed characteristics of both partners in
matches and singles. Sometimes, transfers between
them (salaries in the case of CEOs).

� We would like to: Estimate a parametric form of
the surplus function, in particular in order to test
cross-assortativeness or complementarities between
the observable characteristics of both partners.

In most cases, we will observe a single market. Some-
times, we observe several disconnected markets where
participants may be assumed to have similar characteris-
tics distributions.



2 Equilibrium on the marriage mar-

ket

Becker (JPE 1973�74): Marriage as a competitive match-
ing market with transferable utility, with one dimensional
characteristics and no heterogeneities.

Yet these yield to too stark predictions: �Positive assor-
tative matching�on a single-dimensional �ability index�.

A few years ago, Choo and Siow (JPE 2006) (hereafter,
CS) have incorporated logit-type heterogeneities in Becker�s
model and show that in this framework, the marital sur-
plus can be nonparametrically identi�ed. This started a
rich literature on identi�cation and estimation in match-
ing models.



2.1 Reminder: the Becker-Shapley-Shubik

theory of marriage

Transferable utility: surplus of a pair can be split without
restrictions between man and woman. Static matching,
no frictions. Observable types are discrete. We recall the
Becker-Shapley-Shubik setting �rst. Consider a popula-
tion with nx men of type x, and my women of type y.
Introduce:

� �xy utility of man x with woman y, 0 if single

� 
xy utility of woman y with man x, 0 if single

Transferable utility: �xy utility transfer from x to y.
Then

� �xy � �xy post-transfer utility of man x



� 
xy + �xy post-transfer utility of woman y

Then the market clears in order to maximize

max
��0

X
x;y
�xy�xy :

X
y
�xy � nx,

X
x
�xy � my

where

� �xy = �xy + 
xy is the total gains to marriage,

� �xy is the number of (x; y) pairs,

�x0 = nx�
P
y �xy is the number of single men of type

x, and �0y = my �
P
x �xy is the number of single

women of type y.



2.2 Choo and Siow�s model

jX j groups of men of same observable characteristics,
indexed by x; jYj groups of women, indexed by y (edu-
cation, race, income, religion...). Market participants ob-
serve everybody�s full characteristics �analyst does not.

Choo and Siow: utility of a man m of group x who
marries a woman of group y can be written:

�xy � �xy + "xym;

where �xy = utility transfer in equilibrium, and "xym is a
standard type-I E.V. unobserved heterogeneity. If single,
gets utility

0 + "x0m;

(0 is a choice of normalization w.l.o.g.). Similarly, the
utility of a woman w of group y who marries a man of
group x can be written as


xy + �xy + �xyw;



and she gets utility

0 + �0yw

is she is single.

Denote �xy the number of marriages between men of
group x and women of group y; �x0 the number of single
men of group x; and �0y the number of single women of
group y.

Problem. The matching surpluses (�xy and 
xy) are
not observed; only matching patterns �xy are observed.
What are the restrictions on the surpluses?



Choo and Siow proved the following result:

Theorem 0 (Choo and Siow). In equilibrium, if there
are very large numbers of men and women within each
group,

exp(
�xy

2
) =

�xy
p
�x0�0y

;

where �xy denotes the total systematic net gains to mar-
riage:

�xy = �xy + 
xy:

Therefore marriage patterns directly identify the gains to
marriage � in such a model.

As we shall show, one can in fact extend signi�cantly
Choo and Siow�s model to allow for a much larger class of
unobservable heterogeneities and yet get tractable mod-
els.



2.3 Assumptions

Denote nx the number of men of group x, and my the
number of women of group y; then

8x � 1;
jYjX
y=0

�xy = nx ; 8y � 1;
jX jX
x=0

�xy = my:

(1)
For future reference, we denoteM the set of (jX j jYj+
jX j+jYj) non-negative numbers (�xy) that satisfy these
(jX j + jYj) equalities. Each element of M is called a
�matching� as it de�nes a feasible set of matches (and
singles).

Assumption L (Large market). The number of indi-
viduals on the market N =

PjX j
x=1 nx +

PjYj
y=1my goes

to in�nity; and the ratios (nx=N) and (my=N) are con-
stant.



Assumption S (Separability). The surplus from a match
between a man m of group x and a woman w of group
y must decompose into

�mw = �xy + "xym + �xyw;

where the " and � can be normalized to have zero mean.

Assumption D (Distribution of Unobserved Variation
in Surplus).

a) For any man m such that xm = x; the "xym are
drawn independently from a (jYj+1)-dimensional distri-
bution Px;

b) For any woman w such that yw = y, the �xym are
drawn independently from an (jX j+1)-dimensional dis-
tribution Qy;

c) These draws are independent across men and women.



2.4 Discrete choice structure

Men�s choice. Assume that, at equilibrium, men of
group x get average utility wy from their partner of type
x. Then sum of the expected utilities of the men of group
x is

Gx(w) = nxEPx

"
max

y=0;:::;jYj
(wy + "y)

#
where the expectation is taken over a random vector of
utility shocks ("0; : : : ; "jYj) � Px.

De�ne the generalized entropy G� as the convex conju-
gate (Legendre-Fenchel transform) of Gx as

G�x(nx; a1; : : : ; ajYj) = max
w=(w0;:::;wjYj)

0B@ jYjX
y=0

aywy �Gx(w)

1CA
where a0 = nx �

PjYj
y=1 ay. Note that the ay=nx are

interpreted as the conditional probability that men of type



x choose partner y. At equilibrium, by the Envelope
theorem,

ay=nx =
@Gx(w)

@wy
:

As an important special case (Choo and Siow), when the
utility shocks " and � have the iid Type-I Extreme Value
(Gumbel) distribution, one has the logit structure

Gx(w) = nx log

0B@ jYjX
y=0

ewy

1CA
G�x

�
nx; a1; : : : ; ajYj

�
=

jYjX
y=0

ay

nx
log

ay

nx

(where a0 = nx �
PjYj
y=1 ay). Hence G�x is a usual

entropy function in this case.

Women�s choice. Similarly, the sum of the expected
utilities of the women of group y is

Hy(z) = myEQy

"
max

x=0;:::;jX j
(zx + �x)

#
;



and the associated generalized entropy is denoted

H�y(my; b1; : : : ; bjX j):

At equilibrium, both men�s and women�s problems induce
a relation between the structure of partner choice and the
shares of the surplus. We need to impose feasibility in
order to solve for the equilibrium.



2.5 Social surplus

The equilibrium matching � is determined by the follow-
ing result.

Theorem 1. (Social Surplus) Under assumptions (L),
(S) and (D), the market equilibrium maximizes the social
gain

W(�) =
X
x;y�1

�xy�xy + E(n;m; �);

over all feasible matchings � 2 M, where E is the gen-
eralized entropy given by

E(n;m; �) = �
jX jX
x=1

G�x (nx; �x:)�
jYjX
y=1

H�y
�
my; �:y

�
:

The �rst term
P
xy �xy�xy in the social re�ects �group

preferences�: if groups x and y generate more surplus
when matched, then they should be matched with higher
probability. In the one-dimensional example in Becker,



an increasing x or y could re�ect higher education. If
the marital surplus is complementary in the educations
of the two partners, �xy is supermodular and this �rst
term is maximized when matching partners with similar
education levels (as far as feasibility constraints allow.)

On the other hand, the second term E(�) re�ects the
e¤ect of the dispersion of individual a¢ nities, conditional
on observed characteristics: those men m in a group x
that have more a¢ nity to women of group y should be
matched to women of group y. The formula for W(�)

in Theorem 1 incorporates these two considerations. To
take the education example again, a marriage between a
man with a college degree and a woman who is a high-
school dropout generated less marital surplus on average
than a marriage between college graduates; but because
of the dispersion of marital surplus that comes from the
" and � terms, it will be optimal to have some marriages
between dissimilar partners.



Interpretation. Going back to the discrete choice prob-
lem with mean utilities w:

Gx(w) = nxEPx

"
max

y=0;:::;jYj
(wy + "y)

#
;

�rst note that (again assuming di¤erentiability for sim-
plicity)

@Gx

@wy
(w) = nxPr(yjx;w);

where Pr(yjx;w) denotes the probability that the maxi-
mum is achieved for a choice of partner in group y. As a
consequence, the �rst-order conditions in G�x(a) can be
written

ay = nxPr(yjx;w);

so that any vectorw that achieves the maximum inG�x(nx; a)
is a vector of mean utilities that rationalizes the assign-
ment of partner groups in a for men of group x. More-
over, denote e(yjx;w) the conditional expectation of "y
given that y was chosen by a man of group x when mean



utilities are w. Then by construction

Gx(w) = nx

jYjX
y=0

Pr(yjx;w) (wy + e(yjx;w)) ;

and it follows that

G�x(nx; a) = �nx
jYjX
y=0

Pr(yjx;w)e(yjx;w):

Take a = �x:, the observed assignment of groups of
women to men of group x; and let wx(�x:) be a vector
of mean utilities that rationalizes �x:. Then

G�x (nx; �x:) = �
jYjX
y=0

�xye (yjx;wx(�x:)) :

Summing up, the generalized entropy E(�) can be rewrit-
ten as

jX jX
x=0

jYjX
y=0

�xye(yjx;wx(�x:))+
jYjX
y=0

jX jX
x=0

�xye(xjy;wy(�:y)):



Hence the social gain from a matching W(�) is

W(�) =
X
xy
�xy�xy + E(�):



2.6 Sharing the surplus

Theorem 1 has several important consequences. In partic-
ular, it yields a remarkably simple formula for the utilities
participants of any type obtain in equilibrium. We state
the result for men� the one for women follows with the
obvious change in notation.

Theorem 2. (Participant Utilities) Under assumptions (L),
(S) and (D),

a) In equilibrium, a man m 2 x who marries a woman of
group y obtains utility

Uxy + "xym

where

Uxy =
@G�x
@�xy

(nx; �x�)

can also be computed by solving the system of equations

@Gx

@wxy
(Ux:) = �xy for y = 0; : : : ; jYj ;



given the normalization Ux0 = 0.

b) The average expected utility of the men of group x is

ux =
Gx(Ux:)

nx
= �@G

�
x

@nx
(nx; �x:): (2)

Part b) of Theorem 2, in particular, makes it extremely
easy to evaluate the participant utilities. The data di-
rectly yield the number of participants of this type (nx)
and their matching patterns (�x:); and the speci�ca-
tion of the distribution of unobserved heterogeneity de-
termines the function G�x, allowing for the computation
of ux.

In practice, two cases will arise in empirical applications:

� Matching patterns (�xy) are observed but transfers
�xy are not: typical in marriage market applications.



� Both matching patterns and transfers are observed:
often the case in labour market applications.

Our results allow for handling both situations.



2.7 Consequences for identi�cation

Remember that �xy = Uxy + Vxy; then Theorem 2
implies the following:

Theorem 3. ( Identi�cation) Under assumptions (L), (S)
and (D),

a) In equilibrium, for any x; y � 1

�xy = �
@E(n;m; �)

@�xy
=
@G�x
@�xy

(nx; �x�)+
@H�y
@�xy

�
my; ��y

�
;

(3)

b) Denote the systematic part of pre-transfer utilities
(�; 
) and of transfers � . Then

Uxy = �xy � �xy and Vxy = 
xy + �xy:



Hence:

� If transfers are not observed, then only the joint sur-
plus (sum of the utilities of men and women �xy +

xy) are identi�ed.

� If transfers are observed, individual surpluses of men
and women �xy and 
xy are also identi�ed.



2.8 Examples

We now study a couple of examples.

Example 1 (Heteroskedastic logit). Assume that "ijm
and �ijw are type-I extreme value random variables with
scaling factors �mi and �wj respectively. Then (focusing
on men)

Gi(w) = pi�
m
i log

JX
j=0

exp

 
wj

�mi

!
:

Take numbers of marriages (a1; : : : ; aJ) for men of type
i, and denote a0 = pi �

PJ
j=1 aj. These marriage pat-

terns can be rationalized by the mean utilities

w
j
i (pi; a) = �

m
i log

aj

pi
+ ti(a);

where ti(a) is an arbitrary scalar function. As a result,

G�i (pi; a1; : : : ; aJ) = �
m
i

JX
j=0

aj ln
aj

pi
;



and

E(p; q; �) = �
IX
i=1

�mi

JX
j=0

�ij ln
�ij

pi
�

JX
j=1

�wj

IX
i=0

�ij ln
�ij

qj
:

Hence (3) simpli�es to

2�ij =
�
�mi + �

w
j

�
ln�ij��mi ln�i0��wj ln�0j; (4)

men of type i get an average expected utility

ui = ��mi ln
�i0
pi
;

and women of type j get an average expected utility

vj = ��wj ln
�0j

qj
:



In the homoskedastic case, this simpli�es to Choo and
Siow�s model.

Example 2 (Choo and Siow). As a particular case of
the above example when �mi = �wj = 1, we get

E(�) = �
IX
i=1

JX
j=0

�ij ln
�ij

pi
�

JX
j=1

IX
i=0

�ij ln
�ij

qj
:

which implies Choo and Siow�s result.



As a more complex example of a GEV distribution, con-
sider a nested logit.

Example 3 (Nested logit). Suppose for instance that
men of type i choose among �nests�Ail for l = 1; : : : ;mi,
and that the scale parameter is �mil in nest l, and s

m
i

overall. Then the system of equations that de�nes the
Uij:

@Gi
@wij

(Ui:) = �ij for j = 0; : : : ; J;

can be rewritten as

�ij

pi
=

�P
j02Ail

exp
�
Uij0
�mil

���mil =smi
Pmi
k=1

�P
j02Aik

exp
�
Uij0
�mik

���mik=smi (5)

�
exp

�
Uij=�

m
il

�
P
j02Ail

exp
�
Uij0=�

m
il

�
where l is the index of the nest such that j 2 Ail. There is
no general closed-form expression for Uij; however, note



that within a nest Ail,

Uij = �
m
il log

�ij

pi
+ til

and that in (5) only the constants til remain to be deter-
mined numerically.



While the GEV framework is convenient, the mixed logit
model has also become quite popular in the applied liter-
ature; it is our last example.

Example 4 (Mixed logit). Take nonnegative numbers
�ik such that

PK
k=1�ik = 1 for each i.. Consider the

mixture model in which for any type i of men, with prob-
ability �ik the distribution Pi is iid type-I extreme value
with standard error �mik.

Then the Uij solve

�ij

pi
=

KX
k=1

�ik
eUij=�

m
ikPJ

j0=0 e
Uij0=�

m
ik
:



In the previous examples, the generalized entropies G�x
and H�y , and hence E can be found in closed form. These
are particular instances of McFadden�s Generalized Ex-
treme Value (GEV) framework (see McFadden 1978).
Consider functions gx : RjYj+1 �! R and hy : RjX j+1 �!
R such that the following four conditions hold:

� each gx or hy is positive homogeneous of degree one

� they go to +1 whenever any of their arguments
goes to +1

� their partial derivatives of order k exist outside of 0
and have sign (�1)k

� the functions de�ned by

Px
�
w0; :::; wjYj

�
= exp

�
�gx

�
e�w0; :::; e�wjYj

��
Qy

�
z0; :::; zjX j

�
= exp

�
�hy

�
e�z0; :::; e�zjX j

��
are multivariate cumulative distribution functions.



Then introducing utility shocks "x � Px, and �y � Qy,
we have by a theorem of McFadden (1978):

Gx(w)

nx
= EPx

"
max

y=0;1;:::;jYj
fwy + "yg

#
= log gx (e

w) + 


Hy(z)

my
= EQy

"
max

x=0;1;:::;jX j
fzx + �xg

#
= log hy (e

z) + 


where 
 is the Euler constant 
 ' 0:5772.

Therefore,

G�x (nx; a) =

0B@nx � jYjX
y=1

ay

1CAwx0(nx; a) + jYjX
y=1

ayw
x
y (nx; a)

�nx
�
log gx

�
ew

x(nx;a)
�
+ 


�
where for x = 0; : : : ; jX j, the vector wx (nx; a) solves
the system0B@nx � jYjX

y=1

ay; a1; : : : ; ajYj

1CA = nx @
@w

log gx
�
ew

x�
:

(6)



Similarly, if
PjX j
x=0 bx = my then

H�y (b) =
jX jX
x=0

bxz
y
x (my; b)�my

�
log hy

�
ez
y(my;b)

�
+ 


�
(7)

where the vectors zy (my; b) solve the systems0B@my � jX jX
x=1

bx; b1; : : : ; bjX j

1CA = my @
@z
log hy

�
ez
y�
:

Hence,

E(n;m; �)

=
jX jX
x=1

0B@nx log gx �ewx(nx;�x�)�� jYjX
y=0

�xyw
x
y (nx; �x�)

1CA
+

jYjX
y=1

0B@my log hy �ezy(my;��y)�� jX jX
x=0

�xyz
y
x

�
my; ��y

�1CA
+C



where C = 

�PjX j

x=1 nx +
PjYj
y=1my

�
, and for x; y � 1

@E
@�xy

(n;m; �) = �wxy (nx; �x�)� zyx
�
my; ��y

�
:



3 Parametric estimation

Linear expansion of �xy as ��xy =
PK
k=1 �k�

k
xy, where

�kxy are known basis functions.

Leading example: x is a vector of characteristics x 2 Rd
and also y 2 Rd. The interaction surplus is quadratic,
i.e.

�mlxy = x
myl

and then the surplus function is given by

�A (x; y) =
X
m;l

Amlx
myl

where (Aml) is the a¢ nity matrix. (The estimated �k
should be identi�ed with term Aml of matrix A, and
�k (x; y) = xmyl).

This structural parameter has a matching interpretation
as the vector of weight of interactions of the various com-
ponents:

@W
@Aml

�
AXY

�
= �mlXY



where �mlXY is the covariance between X
m and Y l.

To simplify the exposition, we assume no singles, and
we normalize the number of men and women to one.
Thus �xy can be interpreted a probability of drawing a
(x; y) pair from the sample. This probability has margins
n (x) (probability of drawing a man of type x) andm (y)
(probability of drawing a woman of type y). We denote
� 2M (n;m).

Our goal is estimating �. At equilibrium, we have

W (�) = sup
�2M(n;m)

E� [��(X;Y )] + E (�)

which generates a likelihood ��.





MLE has the following property it is the unique �̂ such
that ��̂ generates moments E��

h
�k (X;Y )

i
that coin-

cide with the empirical moments:

Ĉkn = En
h
�k (X;Y )

i
=
1

n

nX
t=1

�k (Xt; Yt) ;

�̂ is obtained by solving the optimization program:

min
�2Rk

0@W (�)�
KX
k=1

�kĈ
k
n

1A :

Estimation of �̂ requires the computation ofW (�). This
is solved using a generalization of the RAS algorithm.



4 Computation of W

We use an Iterative Projection Fitting Procedure (IPFP),
a.k.a. RAS algorithm, to determine u, v. The algorithm
iterates over values (uk; vk) so that

�k (x; y) = p (x) q (y) exp

 
� (x; y)� uk (x)� vk (y)

�

!
converges to the solution.

Start from any initial guess of u0 and v0.

At step (k + 1) we adjust iteratively

� vk(y) into vk+1 (y) so to �t the y-margin, that is,
set vk+1 such that

evk+1(y)=� =
X
x
q (y) exp

 
� (x; y)� uk (x)

�

!



� and then uk(x) into uk+1 (x) so to �t the x-margin,
that is, set uk+1 such that

euk+1(x)=� =
X
y
p (x) exp

 
� (x; y)� vk+1 (y)

�

!

Stop when su¢ ciently close to a �xed point. The algo-
rithm converges to the right functions u and v.

IPFP algorithm converges much faster for � > 0 than
classical assignment algorithms for � = 0. For a pop-
ulation of a couple of thousands, convergence in half a
second vs. a few minutes.



5 Saliency analysis

5.1 Methodology

Our goal in this section is to build one (or several) index
(indices) of attractiveness.

Classical example: Linear Canonical Correlation method
(suggested by Becker, 1974). Advantage of the method:
immediate availability in most statistical packages, sim-
plicity of use and empirical intuition.

Drawback: purely descriptive, not rooted in a structural
equilibrium model, hence it is not informative about the
agents�preferences, and no clear interpretation in a match-
ing context.

We propose an alternative approach, though related, we
call saliency analysis, that is grounded in an equilibrium
model.



Instead of performing a Singular Value Decomposition
of the (renormalized) cross-covariance matrix �, we per-
form a Singular Value Decomposition of the renormalized
a¢ nity matrix, which is the structural matching parame-
ter estimated in the GS framework.

As before, we assume a quadratic parametrization of �:
for A an nx � ny matrix, we take

�A (x; y) = x
0Ay:

Let AXY be parameter estimated and call it a¢ nity ma-
trix between vectors X and Y .

In the sequel we are going to normalize X and Y into

�X = �
�1=2
X X

�Y = �
�1=2
Y Y

so that �X; �Y � N (0; Id). Note thatA
XY = �

1=2
X AXY�

1=2
Y .



Singular Value Decomposition (SVD) of a¢ nity matrix
AXY yields:

AXY = U 0�V

where � is diagonal matrix with nonnegative, nonincreas-
ing elements (�1; :::; �d), and U

0 and V are orthogonal
matrices.

De�ne ~X = UX and ~Y = V Y as salient vectors of
attractiveness. One has:

The a¢ nity matrix on ~X and ~Y is A ~X ~Y = �.

Interpretation: ~X1 and ~Y 1 are the best explaination
of the matching structure using a one-dimension model;�
~X1; ~X2

�
and

�
~Y 1; ~Y 2

�
are the best explanation of the

matching structure using a two-dimension model; etc.



5.2 Application

The data source is DNB Household Survey (DHS), Waves
1993-2002. Representative panel of the Dutch popula-
tion (region, political preference, housing, income, degree
of urbanization, and age of the head of the household).
2000 households in each wave. Within each household,
all persons aged 16 or over were interviewed.

Data particularity:

1. detailed information about all individuals in the house-
hold: allows us to reconstruct �couples�.

2. rich information set: socio-demographic variables (birth
year and education), morphology (height and weight),
self-assessed health and information about personal-
ity traits.



3. We make use of the panel structure to deal (partly)
with nonresponses on socioeconomic and health vari-
ables. When missing values for education, height,
weight, education, year of birth etc. were encoun-
tered, values reported in adjacent years were im-
puted.

Measuring educational attainment. Respondent�s re-
ported highest level of education achieved.

1. Lower education: lower vocational training, kinder-
garten/primary education, continued primary educa-
tion or elementary secondary education,

2. Intermediate education: secondary education, junior
vocational training

3. Higher education: University: university education.



Measuring morphology and health.

� Height and weight: Body Mass Index of each respon-
dent as the weight in Kg divided by the square of the
height measured in meters.

� The respondents were also asked to report their gen-
eral health. "How do your rate your general health
condition on a scale from 1, excellent, to 5, poor?".

Measuring personality traits. Using multiple waves
to construct the full 16PA scale of Brandstätter (1988),
Nyhus and Webley (2001) showed that this scale distin-
guishes 5 factors. They labelled these factors as:

1. Emotional stability: a high score = less likely to in-
terpret ordinary situations as threatening, and minor
frustrations as hopelessly di¢ cult,



2. Extraversion (outgoing): a high score = more likely
to need attention and social interaction,

3. Conscientiousness (meticulous): a high score = more
likely to be meticulous,

4. Agreeableness (�exibility): a high score = more likely
to be pleasant with others and go out of their way
to help others and,

5. Autonomy (tough-mindedness): a high score = more
likely to direct, rough and dominant.

Measuring risk preference.

� Attitude toward risk: using a list of 6 items of the
type �I am prepared to take the risk to lose money,
when there is also a chance to gain money...... from
a scale from 1, totally disagree, to 7, totally agree�.



� Collapse the data by individuals using the person�s
median answer to each item.

� We then construct an index of risk aversion by adding
the answers to the respective items.

Construction of working dataset.

� Pool all the waves selected (1993-2002).

� Keep only head of the household, spouse of the head
or a permanent partner of the head: sample of roughly
13,000 men and women and identi�es about 7,700
unique households.

� Create women and men datasets: each data set iden-
ti�es about 6,500 di¤erent men and women.



� Create working dataset: merging men dataset to
women dataset using Household id. 5,445 unique
couples identi�ed (roughly 1,250 unmatched men
and women).



6 Tables



Table 1: Number of identi�ed couples and number of
couples with complete information for various subset of
variables.

N
Identi�ed couples 5,445

Couples with complete information on:
Education 5,409

The above + Health, Height and BMIa 3,214
The above + Personality traits (Big 5) 2,573
The above + measure of risk aversion 2,378

Notes: The selected sample for our analysis is the one
from the last row.

a: Excluding health produces exactly the same number of couples at this stage.

Source: DNB. Own calculation.



Table 2: Sample of couples with complete information:
summary statistics by gender.

Husbands Wives

N mean S.E. N mean S.E.

Educational level 2378 2.0 0.6 2378 1.8 0.6

Height 2378 180.8 7.2 2378 168.4 6.5

BMI 2378 24.8 2.9 2378 23.9 4.1

Health 2378 4.1 0.7 2378 4.0 0.7

Conscientiousness 2378 -0.1 0.7 2378 0.1 0.7

Extraversion 2378 -0.1 0.7 2378 0.2 0.6

Agreeableness 2378 -0.1 0.6 2378 -0.1 0.6

Emotional stability 2378 0.1 0.6 2378 -0.2 0.5

Autonomy 2378 -0.0 0.7 2378 -0.0 0.7

Risk aversion 2378 0.1 0.7 2378 -0.2 1.0



Table 3: Estimates of the A¢ nity matrix: quadratic speci�cation (N =
2378).

Wives Education Height. BMI Health Consc. Extra. Agree. Emotio. Auto. Risk
Husbands

Education 0.46 0.00 -0.06 0.01 -0.02 0.03 -0.01 -0.03 0.04 0.01
Height 0.04 0.21 0.04 0.03 -0.06 0.03 0.02 0.00 -0.01 0.02
BMI -0.03 0.03 0.21 0.01 0.03 0.00 -0.05 0.02 0.01 -0.02

Health -0.02 0.02 - 0.04 0.17 - 0.04 0.02 - 0.01 0.01 -0.00 0.03
Conscienciousness -0.07 -0.01 0.07 -0.00 0.16 0.05 0.04 0.06 0.01 0.01

Extraversion 0.00 -0.01 0.00 0.01 -0.06 0.08 -0.04 -0.01 0.02 -0.06
Agreeableness 0.01 0.01 -0.06 0.02 0.10 -0.11 0.00 0.07 -0.07 -0.05

Emotional 0.03 -0.01 0.04 0.06 0.19 0.04 0.01 -0.04 0.08 0.05
Autonomy 0.03 0.02 0.01 0.02 -0.09 0.09 -0.04 0.02 -0.10 0.03

Risk 0.03 -0.01 -0.03 -0.01 0.00 -0.02 -0.03 -0.03 0.08 0.14

Note: Bold coe¢ cients are signi�cant at the 5 percent level.



Table 4: Share of observed surplus explained.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
Share of surplus explained 25.8*** 18.5*** 12.4*** 11.0*** 9.5*** 7.6*** 6.7*** 4.8*** 2.4 1.4

Standard deviation of Shares (1.7) (1.2) (1.1) (1.1) (1.1) (1.2) (1.0) (1.4) (1.4) (1.4)

*** signi�cant at 1 percent



Table 5: Indices of attractiveness.

I1 I2 I3
Attributes M W M W M W

Education 0.91 0.93 0.15 0.13 -0.34 -0.32
Height 0.15 0.08 -0.13 -0.08 0.58 0.60
BMI -0.24 -0.31 0.08 0.06 -0.15 -0.19

Health 0.12 0.13 -0.01 0.14 0.64 0.64
Conscientiousness -0.23 -0.11 0.58 0.90 0.03 0.07

Extraversion -0.00 0.02 -0.27 -0.06 -0.03 0.18
Agreeableness 0.08 -0.02 0.39 0.26 0.22 0.06

Emotional 0.05 -0.03 0.63 0.23 0.24 0.16
Autonomy 0.07 0.08 -0.17 0.09 0.21 -0.12

Risk 0.20 0.14 0.04 0.19 0.00 0.24
Cum. share 0.258 0.443 0.567

*** signi�cant at the 1 percent
Note: M means Men and W means women. Bold coe¢ cients indicates

coe¢ cients larger than 0.5.
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