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1 Introduction

The modelling carried thus far is static in the sense that it
assumes that agents have a technology to meet the other
side of the market all at once, and that negociation is
free and immediate. It also assumes that all the matches
are formed at the same time.

In fact , such is not the case. Agents do not have access
to the totality of the market all at once, but they only
have access to a limited sample drawn randomly from the
population. In one extreme case, one may assume that
agents meet one member of the other side of the market
at once, and make a decision whether to form a match or
not. The presence of search frictions will induce several
modi�cations:

1. Remaining unmatched spares the agent the possibil-
ity to match at a future date: thus intertemporal utility



of unmatched agents will no longer be zero, but will be
endogenously determined as an option value.

2. As waiting is coslty to agents, matches which would
be found suboptimal in the frictionless limit may become
acceptable by agents. Hence the set of possible matches
will be expanded.

3. As agents do not have access to the totality of the
market at once, there is more room for bargaining due do
decreased competitive pressure: agents will bargain over
how to share the surplus with respect to status quo utility
(=option value of remaining single).

In this lecture, we shall study the existence of equilibria
in such settings. We shall be interested in the qualitative
properties of equilibria, in particular under the assump-
tion that the production function satis�es Increasing Dif-
ferences, whether the intuition that �high types match
with high types� carries over. We shall see that it may



not. Indeed, take � (x; y) = (x+ y � 1)2 as suggested
by Shimer and Smith (200), p and q uniform over [0; 1].
In the static case, y = T (x); but in the case with search
fritions, when for instance type 1=2 and meets type 1=2,
they choose not to meet: indeed they would get zero out
of this matching, while if they wait, they are likely to get
a nonzero payo¤.

We shall review two models. One, by Shimer and Smith,
is a search equilibrium with time discounting and destruc-
tion and reformation of matches. The other models, by
Atakan (2006), assumes additive search costs, no destruc-
tion of matches and replacement of matched individuals
by their identical unmatched clones. It has the drawback
of requiring less convincing assumptions, but the deriva-
tion of the model is strikingly simple as we shall see.

1.1 Frictions with time discounting

In a seminal paper, Shimer and Smith (2000) show that
when agents meet randomly and when wating is coslty,



the intuition (true with a continuum of agent under su-
permodular surplus) that the optimal matching is one-to-
one no longer holds. Instead, the matching assignment
map T (x) will be replaced by a matching correspon-
dence A (x), which is the set of types of �rms CEO x

may be willing to match with. Time is too costly to wait
for the optimal match, which will not arrive before an
in�nite amount of time anyway, so the CEO lowers her
standards, and is willing to settle for matches that are
close to optimal. When the matches are too bad, the
CEO may prefer waiting for a better match.

1.1.1 Search Equilibrium

The setting is as before: there are distributions (non nec-
essarily probabilities) p (x) and q (y) over the type spaces
of employees and �rms, respectively. It is assumed that
agents x and y produce together a �ow � (x; y) of output
per unit of time; an unmatched agent produces 0.



Some assumptions are made on the production function
�.

A0. Assume X = Y = [0; 1] and � (x; y) � 0 is C2.

A1. � is strictly supermodular.

At each period, the surplus of a matched pair is split in
the following way

� (x; y) = u (x; y) + v (x; y) :

A given matched pair (x; y) remains matched under the
surplus sharing conditions given by this surplus sharing
rule until the match is destroyed, which occurs according
to a Poisson process of intensity �. Unmatched agents
match randomly according to a Poisson process of inten-
sity �.



Agents discount future earnings with exponential discount
factor r. Let U0 (x) and V0 (y) be the intertemporal
value of unmatched agents x and y, and let

�U (x; y) = U (x; y)� U0 (x)
�V (x; y) = V (x; y)� V0 (y) :

Let A be the set of mutually acceptable matches, ie.

A = f(x; y) 2 X � Y : �U (x; y) � 0; �V (x; y) � 0g

As a notational shorthand, one shall denote y 2 A (x),
x 2 A (y).

The intertemporal utility of unmatched agents results
from the expectation of meeting an acceptable match.
Therefore, the Bellman equation of unmatched workers



and �rms is given by

rU0 (x) = �
Z
A(x)

�U (x; y) d�0 (y) (1.1)

= : u0 (x)

rV0 (y) = �
Z
N(y)

�V (x; y) d�0 (x) (1.2)

= : v0 (y) :

where d�0 (x) and d�0 (y) denote the measures of un-
matched workers of type x and y.

Let us work out the expression of the steady state match-
ing � (x; y); a �ow �� (x; y) is exogenously destroyed,
while a �ow ��0 (x)�0 (y) 1 f(x; y) 2 Ag is exogenously
created. As steady state, one has the matching �ow equa-
tion

�� (x; y) = ��0 (x)�0 (y) 1 f(x; y) 2 Ag (1.3)

thus, integrating over y

� (p (x)� �0 (x)) = ��0 (x)
Z
1 f(x; y) 2 Ag d�0 (y)(1.4)

� (q (y)� �0 (y)) = ��0 (y)
Z
1 f(x; y) 2 Ag d�0 (x) :(1.5)



For matched workers, the intertemporal utility results
from the �ow of payo¤s and the risk of the destruction
of the match. Hence

rU (x; y) = u (x; y)� ��U (x; y)
rV (x; y) = v (x; y)� ��V (x; y)

rearranging these equations yields

(r + �)�U (x; y) = u (x; y)� u0 (x)
(r + �)�V (x; y) = v (x; y)� v0 (y)

Note that even with a continuum of types x and y, it
is not clear how the surplus is shared: indeed, the solu-
tion cannot rely on competitive equilibrium because the
scarsity of encounters drastically limits competition. We
have to assume there is a form of bargaining between x
and y in order to share the pie � (x; y). We shall as-
sume the Nash bargaining solution, which implies that
u (x; y)� u0 (x) = v (x; y)� v0 (y), thus

�U (x; y) = �V (x; y) =
� (x; y)� u0 (x)� v0 (y)

2 (r + �)
:



As a result, the set of mutually acceptable matches is
given by

A = f(x; y) 2 X � Y : � (x; y)� u0 (x)� v0 (y) � 0g :

Also, plugging in into the Bellman equations (1.1) and
(1.2), one gets

u0 (x) = �
Z
A(x)

� (x; y)� u0 (x)� v0 (y) d�0 (y)

v0 (y) = �
Z
A(y)

� (x; y)� u0 (x)� v0 (y) d�0 (x)

where

� =
�

2 (r + �)

An equilibrium can therefore be stated in terms of the
functions u0 and v0 and the densities of unmatched indi-
viduals �0 (x) and �0 (y). A Search Equilibrium (SE) is



a quadruple (u0 (x) ; v0 (y) ; �0 (x) ; �0 (y)) such that

u0 (x) = �
Z
A(x)

� (x; y)� u0 (x)� v0 (y) d�0 (y)

v0 (y) = �
Z
A(y)

� (x; y)� u0 (x)� v0 (y) d�0 (x)

and

� (p (x)� �0 (x)) = ��0 (x)
Z
A(x)

d�0 (y)

� (q (y)� �0 (y)) = ��0 (y)
Z
A(y)

d�0 (x) :

Under assumptions (A0) and (A1), one has the existence
of a SE.

Theorem 1.1 (Shimer and Smith). Under Assumptions
(A0) and (A1), there exists a SE.

Sketch of the proof. The idea is to reformulate the
problem as a �xed point problem. We are looking for u0
and v0 such that

u0 (x) = �
Z
(� (x; y)� u0 (x)� v0 (y))+ d�0 (y)



and a similar equation for v0, that is, we are looking for
a �xed point of operator T de�ned as

T 1 (u0; v0) (x) =
�
R
max (� (x; y)� v0 (y) ; u0 (x)) d�0 (y)

1 + �
R
A(x) d�0 (y)

T 2 (u0; v0) (x) =
�
R
max (� (x; y)� u0 (x) ; v0 (y)) d�0 (x)

1 + �
R
A(y) d�0 (x)

where �0 (dx) and �0 (dy) are implicitely de�ned from
u0 and v0 by

� (p (x)� �0 (x)) = ��0 (x)
Z
A(x)

d�0 (y)

� (q (y)� �0 (y)) = ��0 (y)
Z
A(y)

d�0 (x) :

It can be shown ([?], Lemmas 3 and 4) that the map
(u0; v0) ! (�0 (dx) ; �0 (dy)) is well-de�ned and con-
tinuous.

The existence of a �xed point is established by appeal to
the Schauder Fixed Point Theorem; see [?], Proposition
1 for detail.



Proposition 1.1. Under the assumption (A0), for given
distributions �0 (dx) and �0 (dy) of unmatched individ-
uals(ii) u0 (x) satis�es, the following holds:

(i) for every M � [0; 1]

u0 (x) � �
Z
M
(� (x; y)� u0 (x)� v0 (y)) d�0 (y)

v0 (y) � �
Z
M
(� (x; y)� u0 (x)� v0 (y)) d�0 (x) :

(ii) when the involved quantities exists,

u00 (x) =
�
R
A(x) @x� (x; y) d�0 (y)

1 + �
R
A(x) d�0 (y)

(1.6)

and a similar equation holds for v00 (y).

Proof. (i) follows from the fact that u0 (x) =
R
A(x) � (x; y)�

u0 (x)� v0 (y) d�0 (y) where

A (x) = fy : � (x; y)� u0 (x)� v0 (y) � 0g :



Part (ii) follows from the enveloppe theorem, which yields

u00 (x) = �
Z
A(x)

@x� (x; y)� u00 (x) d�0 (y) :

Note that the matching �ow equation (1.3) rewrites as

� (x; y)

�0 (x)�0 (y)
=
�

�
1 f(x; y) 2 Ag

hence the scaled number of matched pairs identi�es A
and �

� in this model. This is somehow reminiscent of
Choo and Siow�s identifying equation; however, the nor-
malization is by �0 (x)�0 (y) unlike in Choo and Siow�s
model where it is by

q
�0 (x)�0 (y). Of course, the set

of acceptable matchingsA is not a primitive of the model.

1.1.2 Generalized Positive Assortative Matching

Shimer and Smith look for regularity conditions under
which the intuitions of the positive assortative matching



generalize to SE. In the model witout frictions, recall that
A (x) = fT (x)g is a single point, where T (x) = F�1q �
Fp (x).

In the current setting, it would be natural to expect that

A (x) =
h
T (x) ; T (x)

i
where T and T are nondecreasing.

However, this intuition fails, as shown in the examples of
Figure (1): more conditions are needed.

Introduce the following conditions:

(A2) log @�@x (x; y) and log
@�
@y (x; y) are supermodular

(A3) log @2�
@x@y (x; y) is supermodular.

Then:



Figure 1: Source: Shimer and Smith (2000).



Theorem 1.2 (Shimer and Smith). Under assumptions
(A0), (A1), (A2) and (A3), and assuming

@�

@y
(0; y) � 0 � @�

@y
(1; y) for all y (1.7)

one has

A (x) =
h
T (x) ; T (x)

i
where T and T are nondecreasing.

The proof of this result proof is rather technical, and will
be omitted; refer to [?], Proposition 6 and Lemma 5.
It consists in showing that under (A0), (A1), (A2) and
(A3), then the set A of acceptable matches is convex.
This is a direct consequence of the fact hat under the
assumptions made, � is quasiconcave in both its argu-
ments. Next, the lower and upper boundaries of A (x)
are shown to be nondecreasing as a consequence of the
further assumption (1.7).



1.1.3 Frictionless limit

Let us now describe intuitively what happens when the
model tends to the Becker model. In this case:

� agents are in�nitely patient: r ! 0,

� matches are destroyed at a �nite rate: � = 1

� agents meet with an in�nite intensity rate: �! +1

Then � = �
2(r+�)

! +1. In this case, Equation (1.6)
becomes

u00 (x) =

R
A(x) @x� (x; y) d�0 (y)R

A(x) d�0 (y)
(1.8)

and as
h
T (x) ; T (x)

i
will shrink to T (x) so

u00 (x)! @x� (x; T (x))

which is the classical compensating wages di¤erentials
equation from the model without frictions.



1.2 Frictions with additive search cost

In a subsequent paper, Atakan (2006) assumes a discrete
time model where agents unmatched agents pay a per-
period search cost c, until they agree to match. If x
agrees to match with y at time t, then x

In this model, we assume X = Y = [0; 1] and adopt
assumptions A0 and A1 as before. At each period, agents
meet a randomly selected partner, and have to decide
whether to match or not. Each unmatched agent needs to
pay a �xed cost at every period. Agents who matched get
a payo¤ from the joint production and are then withdrawn
from the population. It is assumed that they are replaced
by their identical clones, so that, unlike what happens
in the previous model, a match between agents does not
a¤ect the distributions p and q.

Let U0 (x) and V0 (y) be the intertemporal utilities of
unmatched agent.



� Prior to matching, agents will receive negative pay-
ment �c at each period (search cost).

� Agent who decide to match will get � (x; y) once for
ever and be removed of the market. They will share
the surplus using the Nash bargaining solution, hence
if x and y match, then x will get payment

�c+ �(x; y) + U0 (x)� V0 (y)
2

and y will get

�c+ �(x; y)� U0 (x) + V0 (y)
2

:

� After being matched, agents will receive zero pay-
ment at each future period.

Note that, compared to the previous setting, these as-
sumptions are peculiar in the sense that they do not allow
agents to opt out of the game: unmatched agents have



no choice but pay c at every period. This will imply that
unmatched agents� values are possibly negative, which
implies that agents�reservation utilities are �1.

Agent x has utility stock U0 (x) if she remains unem-
ployed, and �(x;y)+U0(x)�V0(y)2 if she decides to match
with y. Thus she will agree on the match with y if and
only if

�(x; y)� U0 (x)� V0 (y) � 0,: (x; y) 2 A

The Bellman equation of x is therefore

U0 (x) = �c+ U0 (x)

+EY

24 �(x; Y )� U0 (x)� V0 (Y )
2

!+35
which leads to the following proposition:

Theorem 1.3 (Atakan). The following holds:



(i) The matching functions U0 (x) and V0 (y) verify for
all x and y

EY
h
(s (x; Y ))+

i
= 2c (1.9)

EX
h
(s (X; y))+

i
= 2c; (1.10)

where

s (x; y) = � (x; y)� U0 (x)� V0 (y) :

(ii) Under assumptions (A0) and (A1), one has

A (x) =
h
T (x) ; T (x)

i
where T and T are nondecreasing, and

T (x) � F�1q � Fp (x) � T (x) :

Sketch of the proof. Point (i) has been established
above. For (ii), we shall admit without a proof that A (x)
is convex. This implies that

A (x) =
h
T (x) ; T (x)

i



and let us show that T (x) and T (x) are nondecreasing.
Note that

(x; y) 2 A, EZ
h
(s (x; Z)� s (x; y))+

i
� 2c:

Indeed, function

' (x) = EZ
h
(s (x; Z)� x)+

i
is strictly decreasing around 0 and equal to 2c for x = 0,
thus s (x; y) � 0 is equivalent to ' (s (x; y)) � 2c.

Assume that y < T (x). ThenEZ
h
(s (x; Z)� s (x; y))+

i
>

2c. By supermodularity, for x0 > x,

s
�
x0; Z

�
� s

�
x0; y

�
> s (x; Z)� s (x; y)

thusEZ
h�
s
�
x0; Z

�
� s

�
x0; y

��+i > 2c, and y =2 A �x0�.
This being true for all y < T (x), this implies that
y < T

�
x0
�
as y cannot be greater than T

�
x0
�
. Hence

T is nondecreasing. The same argument can be used to
show that T is nondecreasing as well.



Equations (1.9) and (1.10) de�ne implicitely functions
U0 (x) and V0 (y). They are called Constant Surplus
Conditions in the terminology of Atakan; they express
indi¤erence between waiting for one more period and in-
curring the search cost.

In particular, one has by derivation w.r.t. x

EY [1 fY 2 A (x)g @x� (x; Y )] = EY
h
1 fY 2 A (x)gU 00 (x)

i
thus

U 00 (x) =
EY [1 fY 2 A (x)g @x� (x; Y )]

EY [1 fY 2 A (x)g]
hence we recover Equation (1.8) from the Shimer-Smith
model.

When c! 0, Equations (1.9) and (1.10) imply that

U0 (x) + V0 (y) � � (x; y)

and x and y match whenever equality holds.



Remark. In this model, agents have �1 reservation
utility: they are forced to participate, and will continue
to participate even if their U0 (x) or V0 (y) is negative
(which may occur). Hence the �rst counterexample of
Figure 1, with surplus function � (x; y) = (1� x� y)2

cannot occur: at x = y = 1=2, agents may receive no
output but their reservation utility is negative, so cost of
waiting is too high, and they decide to match.

1.3 Identi�cation

In order to estimate the model of Shimer and Smith,
Jacquemet and Robin (2011) extend the model in several
dimensions. They assume that there is a shock " with cdf
G on the joint production � (x; y). x and y are willing
to match whenever

� (x; y) + �"� u0 (x)� v0 (y) � 0



Hence instead of obtaining a set of acceptable matches
A, one obtains a probability of matching of a pair (x; y)
given by

� (x; y) = 1�G
 
�� (x; y)� u0 (x)� v0 (y)

�

!
(1.11)

(note that one recovers � 2 f0; 1g when � ! 0). A
Search Equilibrium (SE) is now a quadruple (u0 (x) ; v0 (y) ; �0 (x) ; �0 (y))
such that

u0 (x) = �
ZZ

(� (x; y) + "� u0 (x)� v0 (y))+ d�0 (y) dG (")

v0 (y) = �
ZZ

(� (x; y) + "� u0 (x)� v0 (y))+ d�0 (x) dG (")

and

� (p (x)� �0 (x)) = ��0 (x)
Z
� (x; y) d�0 (y)

� (q (y)� �0 (y)) = ��0 (y)
Z
� (x; y) d�0 (x) :

In their model, � is actually endogeneously determined
as a function of the number of unmatched workers and



�rms

� =
M (

R
d�0 (x) ;

R
d�0 (y))R

d�0 (x) :
R
d�0 (y)

and they use a Generalized Nash Bargaining solution,
which implies that a part � of the surplus with respect
to the status quo goes to x and a part 1 � � goes to y
(in the symmetric Nash sholtion, � = 1=2).

As before, one has

� (x; y) =
�

�
� (x; y)�0 (x)�0 (y)

hence � (x; y) is identi�ed from

� (x; y) =
�

�

� (x; y)

�0 (x)�0 (y)

up to structural parameters � and �.

Next, the payo¤s �(x;y)� , u0(x)� and v0(y)
� are actually

identi�ed up to structural parameters r, � and �, � and
G. Indeed, inverting equation (1.11) yields

� (x; y)� u0 (x)� v0 (y) = ��G�1 (1� � (x; y))



which alongs with the two set of equations

u0 (x) = �
ZZ

(� (x; y) + "� u0 (x)� v0 (y))+ d�0 (y) dG (")

v0 (y) = �
ZZ

(� (x; y) + "� u0 (x)� v0 (y))+ d�0 (x) dG (")

yields identi�cation of u0, v0, and �. Hence we see that,
in a very di¤erent framework from Choo and Siow, but
in a similar spirit, observation of � (x; y) has allowed us
to identify the production function � (x; y).

What is transfers (salaries) are observed? Let w (x; y) be
the average salary of worker x working for �rm y. We set
� = 1 by scale invariance.As the sharing rules are well-
de�ned, the equilibrium payo¤s u" (x; y) and v" (x; y)
such that

u" (x; y) + v" (x; y) = � (x; y) + "

are given by

u" (x; y) = u0 (x) + � (� (x; y) + "� u0 (x)� v0 (y))
v" (x; y) = v0 (x) + (1� �) (� (x; y) + "� u0 (x)� v0 (y))



thus average share of surplus of matched partners are
identi�ed and given by

�u (x; y) = E [u" (x; y) j" � u0 (x) + v0 (y)� � (x; y)]
�v (x; y) = E [v" (x; y) j" � u0 (x) + v0 (y)� � (x; y)] :

Thus, as in the case previously discussed, the observa-
tion of transfers allow us to recoved the pre-transfer utili-
ties and productivity � (x; y) and 
 (x; y) of workers and
�rms, by the formulas

� (x; y) = �u (x; y)� w (x; y)

 (x; y) = �v (x; y) + w (x; y)

where w (x; y) is the average wage of a worker x working
for a �rm y.

1.4 Empirical literature

Search frictions have the property to �blur� the sorting
that might occur in the labor market. Search frictions



create equilibrium mismatches such that similar workers
will be matched to di¤erent �rms and di¤erent �rms will
employ similar workers. As a result, we might expect
that the sign and strength of the sorting will be di¢ cult
to obtain from data generated in an economy with search
frictions.

Identifying the sign and the strength of the sorting has
been of great interest in the economic literature since the
early theoretical work by Koopmans and Beckman (1957)
[?] and Becker (1973) [?]. The increasing availability of
matched employer-employee panel data has opened new
possibilities to test for the sign of sorting in the labor
market. In their in�uential article, Abowd, Kramarz and
Margolis (1999) [?] developed an empirical strategy to
estimate �rms and workers �xed e¤ects in earnings re-
gressions using large matched employer-employee panel
data. This procedure consists of estimating the following
wage equation

Pit = xit� + �i +	J(i;t) + "it (1.12)



where: Pit are the (log of) earnings of worker i at time
t, xit is a vector of time-varying covariates, �i re�ects
the worker�s �xed e¤ects and 	J(i;t) is the �xed e¤ect
of �rm J employing worker i at time t.

Abowd, Kramarz and Margolis naturally interpreted the
sign and the magnitude of the correlation between �rms
and workers �xed e¤ects as measures of the sign and
strength of the sorting. At their surprise, when apply-
ing their estimation method to French and US data, they
found that the correlation between �i and 	J(i;t) was
close to 0 or even negative in some cases while both sets
correlated positively with measures of �rms� productiv-
ity. This came at a surprise because as shown by Becker
(1973) [?], in the canonical frictionless assignment model,
as soon as the surplus of worker-�rm pairs exhibits com-
plementarities, the (rank-)correlation should be unity, i.e.
positive assortative matching.

This puzzle has received some attention in the literature.
The mainstream explanation is that the correlation be-
tween �rms and workers �xed e¤ects is simply not infor-
mative about the sorting in the economy. Among others,



Lopes de Melo (2009) [?] argued that the �rm �xed ef-
fect is indeed a poor measure of the productive capacity
of the �rm. As it turns out, corr(b�i; b	J(i;t)) is con-
sistently downward biased when b� and b	 are estimated
using Abowd, Kramarz and Margolis�s (1999) [?] method-
ology. This bias can be very large even if there is a large
degree of sorting in the economy and since the reason for
this bias lies in the economic mechanism of the model, it
persists even as the sample size goes to in�nity.

Applying the framework of Shimer and Smith (2000)
[?] discussed earlier to the labor market, Lopes de Melo
(2009) [?] generated simulated panel data allowing the
estimation of Equation 1.12. Monte Carlo simulations

showed that the alternative measure corr

0@b�i;
P
j2eJ(i;t) b�jeNeJ(i;t)

1A,
where eJ(i; t) is the set of workers at �rm J(i; t) at t
except worker i and fN eJ is the number of coworkers of
worker i at t, is a more reliable measure of sorting than
corr(b�i; b	J(i;t)). However, the measure proposed by



Lopes de Melo (2009) [?] does not itself convey all the
relevant information about the strength of sorting in the
economy. As shown by Eeckhout and Kircher (2011) [?],
this measure in fact captures only the range of wages
each type of workers is willing to accept.

Why does the intuitively appealing measure corr(b�i; b	J(i;t))
not capture either the sign or strength of sorting in the
economy? The intuition behind this result is that equilib-
rium wages in the Shimer and Smith (2000) [?] model, are
monotonically increasing in the ability of workers but not
in the productive capacity of the �rm. In fact, the wages
of a given worker have an inverted U-shape around the
optimal match: clearly wages are low when matched with
a bad �rm but they are also low when matched with a
good �rm since this �rm faces the opportunity cost of not
matching with a better worker. This non-monotonicity of
wages in the productive capacity of �rms makes �rm �xed
e¤ects in a wage regression a poor measure of productive
capacities of �rms.
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