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Section 1

FINANCIAL MOTIVATION
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MOTIVATION

Consider a financial market with an asset Xt . Assume:

I Xt is a traded asset, so there is a process (σt) and a martingale
measure under which X = X σ, where

X σ
0 = x

dX σ
t = σtdWt

where (Wt) is a Brownian motion under the martingale measure.

I There is a complete market of vanilla options at maturity T = 1, so the
probability distribution Q of X1 under the martingale measure is given

X1 ∼ Q.

I The volatility (σt) is uncertain, and there is no option market before
maturity T that might lead to restrictions on (σt). Assume that we
need to price an exotic option ξ whose underlying is the wole path
(Xt)t∈[0,1]. The lower bound on the price of ξ is given by

l (Q) = inf
(σt )
{E [ξ] : X σ

0 = x , X σ
1 ∼ Q} .
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A RELATED PROBLEM

Assume we want to price an option of maturity T = 1 on two underlyings
X1 and Y1. The payoff of the option at date T = 1 is

Φ (X1,Y1)

e.g. spread options Φ (X ,Y ) = (X − Y − k)+; cheapest to deliver
Φ (X ,Y ) = min (X ,Y ); etc.

Assume there is a perfectly liquid and complete market of single-name
vanilla options on X1 and Y1, so that the risk neutral marginal probabilities
P of X1 and Q of Y1 are known. Let M (P,Q) be the set of probabilities
with these marginals.

The arbitrage bounds on the option price V are

min
π∈M(P,Q)

Eπ [Φ (X1,Y1)]

≤ V ≤
− min

π∈M(P,Q)
Eπ [−Φ (X1,Y1)] .

which is a (classical) optimal transport problem.
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BREEDEN-LITZENBERGER PORTFOLIO

Consider a European option of payoff ϕ (X1) at maturity 1, and assume
there is a complete market for call and puts on X1 at the same maturity. Let
P0 (k) and C0 (k) the price at time 0 of these options, respectively. Then
(Breeden-Litzenberger 1978)

E [ϕ (X )] = ϕ (x) + ϕ′ (x) (X0 − x)

+
∫ x

0
P0 (k) ϕ′′ (k) dk +

∫ +∞

k
C0 (k) ϕ′′ (k) dk

hence:

I the vanilla market perfectly determines the risk-neutral probability of X
at time 1

I replicating portfolios can be formed directly from vanilla options.
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MONGE-KANTOROVICH THEOREM

Consider

min
(X ,Y )∼π

Eπ [Φ (X ,Y )] (P)

s.t.X ∼ P, Y ∼ Q.

Dual of this problem is

max
ϕ0,ϕ1

E [ϕ1 (Y )− ϕ0 (X )] (D)

s.t.ϕ1 (y)− ϕ0 (x) ≤ Φ (x , y) .

Weak duality: easy. For (X ,Y ) ∼ π ∈ M (P,Q), and (ϕ0, ϕ1) such that
ϕ1 (y)− ϕ0 (x) ≤ Φ (x , y), have

ϕ1 (Y )− ϕ0 (X ) ≤ Φ (X ,Y )

and taking expectations,

Eϕ1 (Y )−Eϕ0 (X ) ≤ EΦ (X ,Y )

thus value of (D) weakly greater than value of (P). Converse relies on a
separation theorem.
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FINANCIAL INTERPRETATION OF MONGE-KANTOROVICH

I The payoff ϕ1 (y)− ϕ0 (x) is obtained from a subreplicating portfolio
composed of vanilla single-name puts and calls. Eϕ1 (Y )−Eϕ0 (X ) its
price.

I Monge-Kantorovich: Price of most expensive superreplicating
portfolio=min price of option. Then ϕ1 and ϕ2 can be taken such that

ϕ1 (y) = inf
x
(ϕ0 (x) + Φ (x , y))

ϕ0 (x) = sup
y
(ϕ1 (y)−Φ (x , y))

(generalized convex duality).
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BACK TO THE ORIGINAL PROBLEM

I Now back to the original problem. Instead of pricing an option on
underlying X and Y at time 1, the underlying is now X1 and X2, the
price of the same asset at two dates forward.

I We still assume that the risk-neutral distributions can be implied from
the option prices. The only difference with the previous setting is that
we now have the restrictions implies by the fundamental law of asset
pricing: under the risk-neutral distribution,

E [X2|X1] = X1

I The upper bound on the option price is now

min
(X1,X2)∼π

Eπ [Φ (X1,X2)] (1)

s.t.X1 ∼ P, X2 ∼ Q, E [X2|X1] = X1
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DUALITY

I The dual problem is

max
ϕ0,ϕ1

E [ϕ2 (X2)− ϕ1 (X1)] (2)

s.t.ϕ2 (x2)− ϕ1 (x1)− a (x1) (x2 − x1) ≤ Φ (x1, x2) .

I Interpretation: this is the optimal subreplicating portfolio made of
vanilla calls and puts on X at maturities 1 and 2, plus rebalancing the
quantity of the asset at period 1.
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Section 2

OPTIMAL SEMIMARTINGALE TRANSPORT
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CONTINUOUS-TIME COUNTERPART

I Consider the minimization of

A = E

[∫ 1

0
L (t,Xt , µ (t,Xt) , σ (t,Xt)) dt

]
over the processes Xt and drifts µ (t, x) as well as diffusion parameter σ
such that

dXt = µ (t,Xt) dt + σ (t,Xt) dWt

and X0 ∼ P, X1 ∼ Q. For notational convenience, introduce
Σ = σσ∗/2, and assume L (t, x , µ, Σ).

I The value of the problem is given by

A = min
µ,Σ,p

∫ ∫ 1

0
L (t, x , µ, Σ) pt (x) dtdx (3)

subject to

p0 = P, p1 = Q

∂tp +∇. (pµ)− ∂2ij

(
pΣij

)
= 0
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CONTINUOUS-TIME OT

I The dual problem is

max
(ϕt )

∫
ϕ1dQ −

∫
ϕ0dP (4)

∂t ϕ +H
(
t, x ,∇ϕ,D2ϕ

)
= 0

where

H (t, x , p,M) = max
µ,Σ
{µ.p + Tr (ΣM)− L (t, x , µ, Σ)} .

I Further

ϕt (y) = inf

{
ϕ0 (x)

+E
[∫ t

0 L (t,Xt , µ (t,Xt) , σ (t,Xt)) dt
] }

s.t.X1 = y

dXt = µ (t,Xt) dt + σ (t,Xt) dWt .
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INFORMAL PROOF

The saddlefunction for this problem is∫ ∫ 1

0
L (t, x , µ, Σ) pt (x) dtdx

+
∫

udp0 −
∫

udP −
∫

vdp1 +
∫

vdQ

+
∫ 1

0

∫
ϕt

(
∂tp +∇. (pµ)− ∂2ij

(
pΣij

))
dxdt

which is equal to ∫
ϕ1dQ −

∫
ϕ0dP

−
∫ ∫ 1

0

(
∂t ϕt + µ.∇ϕ + Tr

(
ΣD2ϕ

)
−L (t, x , µ, Σ)

)
pt (x) dtdx
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INFORMAL PROOF (CTD)

The minimax formulation of the problem is

max
ϕ

min
p

{ ∫
ϕ1dQ −

∫
ϕ0dP

−
∫ ∫ 1

0

(
∂t ϕt +H

(
t, x ,∇ϕ,D2ϕ

))
pt (x) dtdx

}
where

H (t, x , p,M) = sup
µ,Σ
{µ.p + Tr (ΣM)− L (t, x , µ, Σ)}

and one has the following expression for the dual problem

A = max
(ϕt )

∫
ϕ1dQ −

∫
ϕ0dP

s.t. ∂t ϕ +H
(
t, x ,∇ϕ,D2ϕ

)
= 0.

See Tan and Touzi (2012).
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Section 3

SKOROHOD EMBEDDING
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THE SKOROHOD PROBLEM

Now assume that one wishes to constrain Xt to be a Markov martingale, i.e.
dXt = σ (t,Xt) dWt . Then the value of the problem

A = min
Σ,p

∫ ∫ 1

0
L (t, x , Σ) pt (x) dtdx (5)

subject to

p0 = P, p1 = Q

∂tp − ∂2ij

(
pΣij

)
= 0

coincides with its dual formulation, that is

max
(ϕt )

∫
ϕ1dQ −

∫
ϕ0dP (6)

∂t ϕ +H
(
t, x ,D2ϕ

)
= 0

where
H (t, x ,M) = max

Σ
{Tr (Σ.M)− L (t, x , Σ)} .
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AN EXAMPLE

Assume

L (t, x , Σ) = 0 if Tr (Σ) ≤ 1

= +∞ otherwise.

Then

H (t, x ,M) = max
Tr (Σ)≤1

{Tr (Σ.M)}

= max (Sp (M) , 0)

the equation in (6) is

∂t ϕ + max
(
Sp
(
D2ϕ

)
, 0
)
= 0

thus letting ψ (t, x) = −ϕ (−t, x), the equation becomes

∂tψ = min
(
Sp
(
D2ψ

)
, 0
)
= 0

which is the convexification equation of L. Vese (1999), further studied in
Carlier and Galichon (2012).
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Section 4

AZÉMA-YOR FROM OPTIMAL TRANSPORT
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RUNNING MAXIMUM

This section is based on G, Henry-Labordère and Touzi. Consider now X σ
t a

local martingale such that

X σ
0 = x

dX σ
t = σtdWt

and let X̄ be its running maximum

X̄ σ
t = sup

s∈[0,t]
X σ
s .
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AN OPTIMAL MARTINGALE TRANSPORT PROBLEM

I Consider the problem described in the introduction with ξ = X̄ σ
1 , that is

U (Q) = sup
σt

E [X̄ σ
1 ] (7)

s.t. X1 ∼ Q

(we have thus assumed that P = δx ). The minmax formulation of this
problem is

U (Q) = inf
ϕ

sup
σt

E [X̄ σ
1 − ϕ (X σ

1 )] +
∫

ϕdQ (8)

and thus we are led to compute

sup
σt

E [X̄ σ
1 − ϕ (X σ

1 )] .
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REMARKS

I Note that the problem above is equivalently given by

sup
τ

E [W̄τ − ϕ (Wτ)] (9)

where the sup is taken over the stopping times τ.

I Note that formally

ϕ =
∂U

∂Q

(this follows from the enveloppe theorem in (8)). In Machina’s theory
of “local utility”, this means that ϕ is the local utility of U at Q.
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AZÉMA-YOR VIA OPTIMAL TRANSPORT

Let g (resp. G ) the pdf (resp. cdf) of Q, and let r be the upper bound of
the support of Q. The following result holds:
Theorem. The solution to (7) is given by

U (Q) = EQ [b (Y )]

where b is Azéma-Yor’s barycenter function

b (x) = EQ [Y |Y ≥ x ] for x < r

= x for x ≥ r .

Further, the optimal ϕ in (8) is given by

ϕ∗ (x) =
∫

(x − y)+
g (y)

1− G (y)
dy

and the optimal stopping time in (9) is given by

τ∗ = inf {t > 0 : W̄t ≥ b (Wt)} .

Thus, the solution to this problem is given by the Azéma-Yor solution, and

W̄τ ∼ Q.
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SKETCH OF PROOF

Step 1. ϕ may be taken convex.

Step 2. Take a given convex ϕ and introduce

uϕ (x ,m) = sup
τ s.t.

E [max (m, W̄τ + x)− ϕ (Wτ + x)] .

Then uϕ has a PDE characterization as

min
{
u −m+ ϕ (x) ,−∂2xxu

}
= 0 for 0 < x < m

∂mu (m,m) = 0.
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SKETCH OF PROOF (CTD)

Step 3. Peskir (1998): let ψ be a maximal solution of ODE

ψ′ (m) =
1

m− ψ (m)

1

ϕ′′ (ψ (m))

which lies strictly below the diagonal ψ (m) < m (exists). Then

uϕ (x ,m) = m− ϕ (x) +
∫ max(x,ψ(m))

ψ(m)
(x − y) ϕ′′ (y) dy

so that the value of uϕ (x ,m)−m+ ϕ (x) is

1 {ψ (m) < x}
∫ +∞

ψ(m)
(x − y)+ ϕ′′ (y) dy

and an optimal stopping time τ is given by

τ = inf {t > 0 : W̄t ≤ ψ (Wt)} .
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SKETCH OF PROOF (CTD)

Step 4. Recall

U (Q) = inf
ϕ

sup
σt

E [X̄ σ
1 − ϕ (X σ

1 )] +
∫

ϕdQ

= inf
ϕ convex
ϕ(x)=0

uϕ (x , x) +
∫

ϕdQ

thus

U (Q) = inf
ϕ convex
ϕ(x)=0

{
x +

∫
ϕ (y) g (y) dy

+
∫ max(x,ψ(x))

ψ(x)
(x − y) ϕ′′ (y) dy

}

hence

U (Q) = x + inf
ϕ convex
ϕ(x)=0

{∫
c (y) ϕ′′ (y) dy

}

where c (x) = EQ

[
(X − x)+

]
is the European call price of strike x .
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SKETCH OF PROOF (CTD)

Step 5. By the change of variables y = ψ (m), one has

U (Q) = x + inf
ϕ convex
ϕ(x)=0

{∫
c (ψ (m)) ϕ′′ (ψ (m))ψ′ (m) dm

}

= x + inf
ψ(.)

{∫
c (ψ (m))

m− ψ (m)
dm

}
= x +

∫
inf
ψ

{
c (ψ)

y − ψ

}
dy .
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SKETCH OF PROOF (CTD)

Step 6. Let x (y) minimizing

inf
x

{
c (x)

y − x

}
.

By first order conditions,

c ′ (x) (y − x) = c (x)

Pr (Y ≥ x) (y − x) = E
[
(Y − x)+

]
hence

y − x =
E
[
(Y − x)+

]
Pr (Y ≥ x)

= b (x)− x

thus y (x) = b (x).
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SKETCH OF PROOF (CTD)

Now,

inf
x

{
c (x)

y − x

}
= Pr (Y ≥ x (y))

thus

U (Q) = x +
∫

inf
ψ

{
c (ψ)

y − ψ

}
dy = x +

∫
Pr (Y ≥ x (y)) dy

= x +
∫

(1− G (x (y))) dy

thus

U (Q) =
∫

b (y) g (y) dy .
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