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Section 1

INTRODUCTION
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MOTIVATION: MATZKIN’S IDENTIFICATION OF HEDONIC MODELS

» Consider a standard hedonic model (Ekeland, Heckman and Nesheim,
Heckman, Nesheim and Matzkin). A consumer of observed
characteristics x € R¥ and latent characteristics u € R choosing a
good whose quality is a scalar y € R (say, the size of a house). Assume
utility of consumer choosing y is given by

S(x,y)+uy
where S (x, y) is the observed part of the consumer surplus, which is

assumed to be concave in y, and uy is a preference shock.
» The indirect utility is given by

¢ (x,u) = max {5 (x,y) + uy}

so by first order conditions, dS (x, y) /dy + u = 0, thus, letting
P (x,y) = =S (x,y), quality y is chosen by consumer (x, u(x,y)) such
that 3
) = 2
which is nondecreasing in y.
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MOTIVATION: MATZKIN’S IDENTIFICATION OF HEDONIC MODELS

» The econometrician:

» assumes U is independent from X and postulates the distribution of U

(say, ¢ ([0,1]))

> observes the distribution of choices Y given observable characteristics
X =x.

» Then (Matzkin), by monotonicity of y (x, u) in u, one has

which identifies 9,1, and hence the marginal surplus surplus 9, S (x, y).

» By the same token,

identifies d,¢ (x, u) to F;|1X'
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THIS TALK

» The aim of this talk is to:
> generalize this strategy to vector y

> obtain a meaningful notion of conditional vector quantile
» extend Koenker and Bassett's (1978) quantile regression to the vector

case
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Section 2

CONDITIONAL VECTOR QUANTILES
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MULTIVARIATE EXTENSION OF MATZKIN’S STRATEGY

» Now assume quality is a vector y € RY, and latent characteristics is
u € RY (say, sizet-amenities). Assume utility of consumer choosing y is
given by
S(x,y)+u'y
where S (x, y) is still assumed to be concave in y.
> As before, let ¢ (x,y) = —S (x,y). By first order conditions, quality y
is chosen by consumer (x, u(x,y)) such that

u(x,y):=Vyp(xy)
which, conditional on x, is “vector nondecreasing” in y in a generalized
sense, where vector nondecreasing=gradient of a convex function.
> As before, assume:
» The distribution of U given X = x is p (say U ([0 1]d))
> The distribution Fy |x of Y given X is observed.

> Question: Is V1 identified as in the scalar case? equivalently, and
omitting the dependence in x, is there a convex function ¥ (y) such that

Vi (Y) ~u?
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IDENTIFICATION VIA MASS TRANSPORTATION

» The answer, is yes. In fact, ¥ is the solution to
min [ 9 (y)dFy (1) + [ 9 () du(w) )

st p(y)+o(u)>u'y
which is the Monge-Kantorovich problem.

» This is the “mass transportation approach” to identification, applied to
a number of contexts by G and Salanié (2012), Chiong, G, and Shum
(2014), Bonnet, G, and Shum (2015), Chernozhukov, G, Henry and
Pass (2015).

» Problem (1) has a primal formulation which is

max [E {UTY} (2)
Y ~ Fy
U~

» Fundamental property: both (1) and (2) have solutions, and the
solutions are related by

U=Vy(Y)and Y =Vo (V).
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VECTOR QUANTILES

» We call the “Vector Quantile” map associated to the distribution of Y
(relative to distribution ) as

Qy (u) := Vg (u)

where ¢ is a solution to (1).

» Qvy is the unique map which is the gradient of a convex function and
which maps distribution u onto Fy.

> See Ekeland, G and Henry (2012), Carlier, G and Santambrogio (2010),
Chernozhukov, G, Hallin and Henry (2015).
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CONDITIONAL VECTOR QUANTILES

> Now let us go back to the conditional case. We have
min [ 4 (y) dFxy () + [ @ (u)dFx (0 du(s)  (3)

st.p(xy)+oxu)>u'y

which is an infinite-dimensional linear programming problem.
» The functions ¢ (x,.) and ¢ (x, .) are conjugate in the sense that

¢ (x,u) = sup, {—9 (x,y) +u'y}

4
¥ (x,y) =sup, {—¢ (x,u) +u'y} *)
» Problem (1) has a primal formulation which is
max [E {UTY] (5)
(X, Y) ~ Fxy
U~p, ULX

» Fundamental property: both (1) and (2) have solutions, and the
solutions are related by

U=Vy(X,Y)and Y = Vo (X, U).
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CONDITIONAL VECTOR QUANTILES

» We call the “Conditonal Vector Quantile” map associated to the
distribution of Y conditional on X (relative to distribution ) as

Qyx (ulx) := Vug (x, u)

where ¢ is a solution to (1).

» Qy is the unique map which is the gradient of a convex function in u
and which maps distribution Fx ® p onto Fxy.
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CONDITIONAL VECTOR QUANTILES

We assume that the following condition holds:

(N) Fy has a density fi; with respect to the Lebesgue measure on RY with
a convex support set U .

(C) Foreach x € X, the distribution Fy|x (-, x) admits a density fy|x (-, x)
with respect to the Lebesgue measure on RY.

(M) The second moment of Y and the second moment of U are finite,
namely

[ 1512 Fyx(dy, ) < 0 and [ [lul]2Fu(d) < .

DEFINITION

The map (u, x) — Vy¢(u, x) will be called the conditional vector quantile
function, namely, denoted Qy |x (u, x).
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A FORMAL RESULT

THEOREM (CONDITIONAL VECTOR QUANTILES AS
OPTIMAL TRANSPORT)

Suppose conditions (N), (C), and (M) hold.

(i) There exists a pair of maps (u,x) — ¢(u,x) and (y,x) — ¢(y, x), each
mapping from R x X to R, that solve the problem (1). For each x € X,
the maps u — @(u,x) and y — P(y, x) are convex and satisfy (4).

(ii) The vector U = Q;‘IX(Y, X) is a solution to the primal problem (2) and
is unique in the sense that any other solution U* obeys U* = U almost
surely. The primal (2) and dual (1) have the same value.

(iii) The maps u+— V,¢(u, x) and y — V,(y, x) are inverses of each
other: for each x € X, and for almost every u under Fy; and almost every y
under Fy|x (-, x)

Vyp(Vug(u,x),x) = u, Vup(Vyply,x).x) = y.
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Section 3

VECTOR QUANTILE REGRESSION
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LINEARITY

» We can replace X by f(X) denote a vector of regressors formed as
transformations of X, such that the first component of X is 1 (intercept
term in the model) and such that conditioning on X is equivalent to
conditioning on f (X). The dimension of X is denoted by p and we
shall denote X = (1, X_1) with X_; € RP~1. Set x = E [X].

> Recall that

QY|X(UvX) = Vug(u,x)
thus we would like to impose linearity with respect to X.
» Set ¢ (u,x) = b(u) ", so that problem (1) is changed into

min [ (x,y) dFxy (x,y) +%7 [ b(u)dye (0 (6)
st (x,y)+x b(u)>u'y

and as before, we may express ¢ as a function of b and get
P (x,y) =sup {u'y —x'b (u)} .
y

whose first order conditions are y = x' Db (u).
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LINEARITY

> As before, problem (6) has a dual formulation. The corresponding
primal formulation is
max E [UT Y} (7)
(X, Y) ~ Fxy
U~pu
E [X|U] =x
» Equivalently,
minE[Hu— Y|\2]. (8)
(X,Y) ~ Fxy
U~
E[X|U]=x
» Vector Quantile Regression was introduced in Carlier, Chernozhukov,
and G (Ann. Stats., 2016). While the focus on that paper was on

correct specification, today we'll give further results beyond that case.
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VQOR: EXISTENCE

(G) The support of W = (X_1, Y), say W, is a closure of an open bounded
convex subset of RP~119  the density fiy of W is uniformly bounded
from above and does not vanish anywhere on the interior of WW. The
set U is a closure of an open bounded convex subset of RY, and the
density fy is strictly positive over U.

THEOREM

Suppose that condition (G) holds. Then the dual problem (6) admits at least
a solution (¢, B) such that

P(x,y) = sup{u'y — B(u) x}.
ueld
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VQR: CONSISTENCY AND UNIQUENESS

Assume:

(QL) We have a quasi-linear representation a.s.
Y =B(0)"X, U~ Fy, IE[X\ U] = E[X],

where u +— B(u) is a map from U to the set M, 4 of p x d matrices
such that u+ B(u) " x is a gradient of convex function for each x € X
and a.e. u € U:

B(u)"x = V, @ (u), ®u(u):=B(u)'x,

where v+ B(u) is C! map from U to R9, and u+ B(u)x is a
strictly convex map from U to R.

This condition allows for a degree of misspecification, which allows for a
latent factor representation where the latent factor obeys the relaxed
independence constraints.
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VQR: CONSISTENCY AND UNIQUENESS

THEOREM

Suppose conditions (M), (N), (C), and (QL) hold.

(i) The random vector U entering the quasi-linear representation (QL) solves
(7)-

(ii) The quasi-linear representation is unlque a.s. that is if we also have

Y =B(U)"X withU~ Fy, E[X | U] =E[X], u— XTB(u) is a gradient
of a strictly convex function in u € U a.s., then U = U and

XTB(0) = XTB(0) as
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VQR: COMPUTATION

» Sample (X;, Y;) of size n. Discretize U into m sample points. Let p be
the number of regressors. Program is

max Tr(UTrtY)

>0
1 =vT [yT]
X = ux [b]

where X isnx p, Yisnxd, visnx1suchthatv;=1/n; Uis
mxd, uismx1; wismxn.

» To run this optimization problem, need to vectorize matrices. Very easy
using Kronecker products. We have

Tr(UTnY) = vec (I5)T (Y @ U)T vec (1)
vec (1T, 71) = (I, ® 1T,) vec (1)
vec (tX) = (XT & I;m) vec (1)

Program is implemented in Matlab; optimization phase is done using
state-of-the-art LP solver (Gurobi).
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Section 4

BEYOND CORRECT SPECIFICATION
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AN EXISTENCE THEOREM

» Theorem: primal variables 7t (u, x, y) as well as dual variables (¢, b)
exist in general (i.e. beyond correct specification). They are related by
complementary slackness

(u,x,y) € Supp (1) = ¢ (x,y) = u'y —x" b (u)

Proof of existence of a dual solution is significantly more involved than
Monge-Kantorovich theorem.

> Letting ®, (u) := x b(u), whose Legendre transform is y + 1 (x, y),
®5* (u) is the convex envelope of @y (u) for fixed x, and we have

(u,x,y) € Supp (1) = y € 9P," (u)

» This provides a general representation result of the dependence between
X and Y:

Y € 0®% (U) with x — & (u) affine
Oy (U) =% (U) as.
E[X|U] =E[X], U~u([0,1])
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DIMENSION 1: CONNECTION WITH CLASSICAL QR

» Assume d = 1. What is the connection with classical QR?
> Recall the dual formulation of classical Quantile Regression (see
Koenker's 2005 monograph)

max E[A;Y]
V>0

A: <1 [P]
E[A:X] = (1—t)% [B¢]
» When t — xTB (t) is nondecreasing, thus t — Ay is nonincreasing.
However, in sample, t — A; has no reason to be nonincreasing in

general. We can thus form the augmented problem, including this
constraint:

1
max/ E[A,Y]du
A:>0J0

Ar <1 [P]

E[A:X] = (1—t)% [Be]
At S As, t 2 S
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VOR: CONNECTION WITH CLASSICAL QR

» Theorem: this problem is equivalent to VQR.

> Indeed, let U = fol Acdt. One has Ay = 1{U > t} for t € [0, 1], and
the previous problem rewrites

mﬁx]E[UY]
E1{U>t}X]=(1—-t)x VYt € [0,1]
or alternatively
mﬁx]E[UY]
U~U([0,1]), E[X|U] =x

which is VQR. Dual variable b is recovered via b (t) = fot BrdT.
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CONNECTION WITH CLASSICAL QR: QUASI-SPECIFICATION

v

Question: why mean-independence plays a role in QR?
TB?R

v

Definition: QR is quasi-specified if t — x is increasing for all x,

i.e. if there is no “crossing problem".

v

Theorem: if QR is quasi-specified, then there is a representation

Y =XTBSR U ~u(0,1]), E[X|U] = x.

v

Proof: there exists t (x, y) such that XTBSZ"E” =y. Letting
U=t(X,Y), one has Y = XTBR; but

1{U>t} =1 {y > XTB?R}, hence E[X1{U > t}] = x (1 — t),
QED.
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REMAINING AGENDA

» Empirical application in progress: hedonics models (real estate prices;
wine prices). Possible other applications to measures of financial risk.

» Numerical methods: auction algorithm; entropic regularization...

» Sparse versions when vector of covariates X is high-dimensional.
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