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To Marius, André and Jacqueline Galichon.



La filosofia e scritta in questo grandissimo libro che continuamente ci
sta aperto innanzi agli occhi (io dico I'universo), ma non si puo
intendere se prima non s’impara a intendere la lingua, e a conoscere i
caratteri nei quali e scritto. Egli e scritto in lingua matematica, e i
caratteri son triangoli, cerchi e altre figure geometriche, senza i quali
mezi € impossibile a intenderne umanamente parola; senza questi € un
aggirarsi vanamente per un oscuro laberinto.

— Galileo Galilei (1564-1642), Il Saggiatore, cap.6



Preface

This book has emerged from several courses and lecture series I gave over the last few
years, usually in front of a diverse audience of graduate students and researchers with
a background in economics or in mathematics. The goal of this work is to provide
a concise treatment of discrete choice models and their applications, leveraging the
powerful elegance of mathematics. The mathematical foundations of these models
is optimization theory for about a half, and probability and statistics for the other
half. As we shall develop, there are intricate connections with the theory of optimal
transport, which was the subject of my previous book, Optimal Transport Methods
in Economics. But in these lectures the framework is broader. The focus is on
choice, demand, price formation and equilibrium, and the statistical estimation of
the related models. The exposition is skewed toward my own research, and beyond
that, to my own tastes, so there is no attempt at an exhaustive treatment of these
models. It is not a survey or a guide to the literature.

Gabriele Buontempo, Enzo Di Pasquale, Alessandro Facchini and Clément Montes
have provided helpful research assistance at various stages of this project. I am
grateful to the PhD students of my Applied Microeconometrics class at New York
University who have spotted typos and made suggestions on earlier versions of this
text, in particular Diego Cussen, Caleb Maresca, Bill Wang. I am hugely indebted
to several people who did an exhaustive reading of earlier drafts: Giuseppe Cognata,
Facundo Danza, Amine Fahli, Octavia Ghelfi, Leon Guzman, Antoine Jacquet, Is-
abelle Perrigne, Maxime Sylvestre. I am particularly grateful to Antoine Jacquet,
who did not only read and comment, but suggested improvements at many places.
Writing this book while serving as director of New York University’s academic center
in Paris required some multitasking; but I could not have completed this project in a
reasonable amount of time without relying on a great team of dedicated administra-
tors of the center, among whom Beth Epstein, Martina Faltova, Chioma Iwuegbu,
Valérie Michelin, Marcus Neeld and Xavier Séguy. Much of my research agenda over
the years has been funded by two grants of the European Research Council of Euro-
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pean Union (starting grant No 313699, and consolidator grant No. 866274). These
grants have been transformative, and this book would probably not have come to

exist without them.



Introduction

This book offers a mathematical perspective of discrete choice models and related
topics. Discrete choice models, also called multinomial choice models, are used to
model situations where the consumer needs to choose one option among several.
One of the first area where it has been applied has been the choice of transportation
mode, but the methodology has proved useful to understand many decisions whose
nature is economic (choice of education, employment, retirement, consumption), de-
mographic (fertility decisions, migration), sociological (marriage, friendship forma-
tion), geographic (trade, urban dwelling), political (vote). While discrete choice
models originate in transportation studies and in psychology in the middle of the
20th century, they have made their way to other disciplines in the last 70 years, up
to a point that they are now at the core of practically all of the social sciences.

In this book (and in much of the literature), the discrete choice approach is based
on the idea of individual rationality: it postulates that individual decision-makers
associate a numerical valuation called “utility” to each option that they are faced
with. The rational choice of decision-makers consists of picking the option with
the largest associated amount of utility; the choice of each agent is thus obtained
by the outcome of a simple optimization problem, maximizing utility over a finite
(“discrete”) set of options. These choices are then aggregated across individuals in
order to account for the share of the population choosing each option, which allows
to express the demand (or “market share”) for every option.

Of course, the utilities that individuals associate with each option are most often
not observed by the analyst, but they can be inferred by the latter based on the
data of the choices made. Discrete choice models are thus nonlinear econometric
models predicting categorical outcomes — which option has been picked. To train
these models, one generally takes a parametric form of the utilities, and estimates
the value of the parameter vector which lead to fitting as best as possible the observed
choices according to some criterion. Many criteria exist, such as maximum likelihood,
methods of moments, minimax regret, maximum score, revealed preferences. The

13
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nature of this criterion very much depends on how exactly the utilities are modeled,
computational convenience, desired robustness to misspecification, etc.

An attractive feature of discrete choice models is the ability to conduct counter-
factual analysis: once the utilities have been estimated, it is then possible to predict
the change in aggregate demand if some policy intervention were to be implemented,
like the implementation of a tax affecting a transportation mode. Thus, in contrast
with other types of methods, such as regression analysis or factor analysis, multino-
mial choice methods allow us to address in-depth causal questions as they attempt to
capture the core of the decision-making process. Almost built-in into discrete choice
models is the ability to offer welfare considerations: indeed, in discrete choice mod-
els the individual utilities are the primary object of focus, so computing the social
welfare is simply a matter of summation. The models will thus allow us to predict
in a very straightforward manner the welfare impact of a policy change.

An important class of discrete choice models rely on the random utility paradigm.
Take the example of an invidivual needing to choose a transportation mode. In
the random utility framework, one assumes that the utilities that agents associate
with each mode have a “systematic” component, which depends deterministically
on the agents and the option’s observable characteristics, but have in addition a
“idiosyncratic” component, which captures the part of the decision that cannot be
captured by observable charactetistics alone. Even if two agents have the exact
same observable characteristics, one may choose the train and one may choose the
plane, simply because their idiosyncratic utility terms differ. One thus speaks of
random utility, or stochastic choice, which is a bit of a misnomer because it does not
necessarily mean that the idiosyncratic terms are randomly drawn by the agents,
or that there is any randomness in the decision-making process. However, as the
idiosyncratic term is unknown to the analyst, it is random from her point of view
for all practical purposes. And although the analyst does not know the idiosyncratic
terms, she typically postulates that they have a known distribution, or at least,
belongs to a parametric family of distributions. From the point of view of the analyst,
the idiosyncratic term is a random utility term whose distribution is known.

The random utility paradigm does not allow to predict the choice that a particular
individual will make, but, as chapter 1 shall show, it allows the analyst to compute
the probability that a particular individual will choose one option or the other.
This is closely connected to the classification problem in machine learning — and
in fact, many of the tools are the same. The random utility framework allows to
compute aggregate quantities, such as the aggregate welfare (the sum of the welfare
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of individuals in the population), the predicted market shares, and the part of the
aggregate welfare that is due to systematic utilities, and the part that is due the
idiosyncratic terms — the latter quantity being defined (up to a sign) as the entropy
of choice, a concept introduced in chapter 1. The analyst also needs to solve the
inverse problem of recovering the systematic utilities based on the observation of the
market shares, a fundamental problem called “market share inversion problem”. As
we shall see in chapter 1, convex analysis is the suitable mathematical framework
to perform these calculations without making any significant assumptions on the
random utilities. Thanks to convex analysis, we will be able to formulate the basic
calculations as a convex optimization problem, which is both practically useful, but
will also have important consequences for the analysis of the problem, for instance
it will allows one to deduce results about existence and uniqueness of the solution to
the market share inversion problem.

As show in chapter 2, some distributions of random utilities lead to simple for-
mulas for the expression of the welfare, the predicted market shares, and in some
cases, the entropy of the choice and the demand inversion. The most famous case is
the logit (or “logistic”) framework, which assumes that the random utilities follow
an extreme value distribution more precisely independent and identically distributed
Gumbel variables. The Gumbel distribution is one of the three stable distributions
arising in extreme value theory; it is the limiting distribution (after renormalization)
of the maximum of any independently distributed random variables with a thin tail.
As is probably already familiar to most readers, the logit model allows for simple
formulas for the market shares and allows to solve the market share inversion prob-
lem in closed form. It also leads to an entropy of choice that coincides (up to a sign)
with the Gibbs entropy.

Yet for all its appeal, the logit paradigm is a very rigid framework which has im-
portant shortcomings. In the transportation mode example, it would specify that the
random utility associated with taking bus, train and plane are independent, which
does not capture the fact that some travelers may dislike air travels in a manner
that cannot be predicted by their observable characteristics, thereby introducing a
correlation between the random utilities associated with the “bus” and “train” op-
tions. Consequently, chapter 2 moves on to exploring distributions of random utility
that retain tractability with more flexibility, in particular allowing for this type of
correlations. An important class of such distributions presented there is the class
of multivariate extreme value distributions, discussed in section 2.2, which can be
obtained by an ingenious combination of i.i.d. Gumbel variables used as factors, in a
somewhat similar way any Gaussian vector can be obtained by a linear combination
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of i.i.d. standard normal factors. Multivariate extreme value distributions, which
following Daniel McFadden are often called ”Generalized Extreme Value” in econo-
metrics, lead to a closed-form expression for the welfare function, the market shares,
and sometimes also for the entropy of choice, as in the case of the nested logit model,
one of the most important representatives of the class.

The logit framework plays a central role in structural estimation, as we begin
to see in the subsequent chapter 3 on the logistic regression. Consider a stochastic
choice problem where the systematic utilities belong to a parametric family and the
random utilities are i.i.d. Gumbel. Given a parameter vector, the model predicts
the probabilities that each agent will pick the various options, which leads to the
specification of a tractable parametric family of choice probability. Assuming that
the observations are independently sampled, one can then form the log-likelihood
of the sample. Logistic regression is simply maximum likelihood estimation in this
setting. It is one of the most important topics of this book, so the entire chapter 3 is
dedicated to its study. In addition to being a maxium likelihood estimation problem,
the logistic regression can be interpreted as a method of moments, and also as a
minimax-regret procedure. There is a useful link with generalized linear models,
an important part of the statistical toolbox which generalize the Poisson regression:
in section 3.4 we recall that connection, known as the “Poisson trick” among the
machine learning community, which asserts that the logistic regression amounts to a
Poisson regression with the addition of a fixed effect associated to each option. From
the computational point of view, the logistic regression has many attractive features.
It is a convex optimization problem, which leads to easy computational methods as
discussed in section 3.3. One can state simple conditions to characterize the existence
and the uniqueness of a parameter estimator, as carried out in section 3.5 and 3.6.
When the dimensionality of the parameter is large, the model needs to be regularized
by adding a penalty term to prevent overfitting; this can be done for various types
of regularizations such as LASSO, with dedicated algorithms such as the proximal
gradient descent methods also recalled in chapter 3.7.

All the models seen until this point have been based on the logistic framework
or its multivariate extreme value generalization (in chapter 2). Yet a popular ap-
proach to demand estimation, in sharp contrast with the logistic model is introduced
in chapter 4: the characteristics-based approach. It gives up on the hope of getting
closed-form expression for the welfare and other quantities, but it provides a simple
and easy-to-interpret geometric description of the interactions between the charac-
teristics of the decision-maker and the characteristics associated with each option.
In the most popular version, explored in section 4.1, one assumes that this interac-
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tion is a scalar product, or more generally, a bilinear form. This allows one to make
use of Euclidian geometry to describe the choice problem, as one may then locate
the characteristics of the consumers who choose a particular option on a polytope
in the characteristics space. As we shall see, this problem is closely related to the
theory optimal transport, which was the focus of my previous book [86], and one can
leverage the power of computational geometry to efficiently compute the predicted
market shares and perform demand inversion. Mixing the characteristics approach
and the logistic framework leads to the random coefficient logit specification ex-
plored in section 4.2, and proposed by Berry, Levinsohn and Pakes. In this model,
the random utility terms is a sum of two independent component, one term with
a Gumbel distribution and a characteristics-based term. Here again, the theory of
optimal transport offers insights, as discrete choice problems with random coefficient
logit random utility can be reformulated in terms of an entropic optimal transport
problem, for which many computational tools exist. The random coefficient logit
specification is the foundation for Berry, Levinsohn and Pakes’ method for struc-
tural estimation which is then presented in section 4.4, which allows for endogeneity
and allow to model not only the demand side, but possibly the supply side as well,
with imperfect competition among sellers.

Up to this point, the book has regarded the systematic utilities as an exogenous
primitive of the model. However, one may want to incorporate random utility specifi-
cations into equilibrium models where the systematic utilities depend on the price or
other quantities that are adjusted at equilibrium. Chapter 5 offers several examples
of such type of models of allocation and equilibrium pricing. The first example is in-
ternational trade, the primary model of which is the gravity equation. In the gravity
equation, trade flows are adjusted by supply and demand according to propensity
of pairs of countries to trade with each other, which depends on factor such as ge-
ographic distance, trade agreements, cultural proximity, and many other regressors;
but they also depend on the sizes of the countries, as measured by their volumes of
exports and imports. The trade flows are therefore adjusted at equilibrium by prices,
which are materialized by exporter- and importer-fixed effects. Section 5.3 recalls an
important reformulation of the gravity equation as a Poisson equation with two-way
fixed effects, thus extending the “Poisson trick” to bipartite models.

The incorporation of logistic random utility in various microeconomic frameworks
yield to variants of the gravity equation. This is the case of the models of matching
with transfers pioneered by Gary Becker, and section 5.4 introduces the class of em-
pirical models of matching, which are standard models of matching with the addition
of a random utility term. The introduction of the random utility term has multi-
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ple benefits: accounting for the heterogeneity that is not observed by the analyst,
imposing uniqueness of the equilibrium matching in a large population, providing
smoothness which is desirable for estimation and inference purposes. A pioneering
example of an empirical matching model the model of Choo and Siow, which has
been successfully applied to the analysis of the marriage market, and, to a lesser
extent, to the labor market. The Choo and Siow framework is a model of bipar-
tite matching with transferable utility, meaning that prices (wages or other forms of
utility transfers via bargaining) adjust at equilibrium in order to clear supply and
demand. It incorporates logit heterogeneity, meaning that agent’s utilities are the
sum of a systematic utility term, which is the outcome of a bargaining process, plus a
random utility term, which is i.i.d. Gumbel. This structure allows to reformulate the
problem of equilibrium matching as a pair of interdependent discrete choice model on
each side of the market, and to solve it using convex optimization or a reformulation
as a generalized linear model with two-way fixed effects.

The one-to-one, bipartite framework of the Choo and Siow model can be viewed
as restrictive, for example if one would like to study the same-sex marriage market
(which is not bipartite), or the employer-employee matching market (which is not
one-to-one). Fortunately, as seen in section 5.5, empirical models of matching a-la
Choo and Siow can be extended quite directly to more general models of coalition
formation. While models of matchings do not necessarily put explicit emphasize on
prices (although they assume the existence of prices to clear the market), hedonic
models, covered in section 5.6, directly model their formation. In that paradigm, a
good is produced and consumed in different varieties, or qualities by heterogeneous
producers and consumers. For instance, cars are differentiated on the quality space,
and are imperfect substitutes for one another, both from the consumers and the
producers perspectives. The prices enter the systematic utilities of both consumers
and producers, and both side of the market face a discrete choice problem. At
equilibrium, prices adjust so that the demand for each quality from the consumers
side equates the corresponding supply on the producers side, and the structural
parameters on both sides can be learned in that way.

Our discussion until now has focused on static models, in the sense that it has
not taken into account the effect of present decisions on future outcomes. Take main-
tenance decision for example: deciding on the preventive maintenance of a vehicle
generates a present-period cost which may exceed the present-period benefit; but
performing the maintenance procedure may be justified because it will decrease the
costs of operations in the future. Of course, one could incorporate a discounted value
in the systematic utilities associated with the maintenance or no-maintenance deci-
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sion, but this value depends on the various decisions that will be taken in the future,
as the decision-maker will be faced with other choices (maintening, how to operate,
selling the vehicle, etc.) at each future period. This is the core of the issue that dy-
namic discrete choice models, covered in chapter 6, are tackling. The chapter starts
with a discussion in section 6.1 of these models from a linear optimization point of
view which is not typical in most treatments of the topics, but which highlights the
connections with the models seen thus far. Logistic random utility is then explicitely
brought in in section 6.2, where it is shown that a dynamic discrete choice model
is made of a series of static discrete choice problems dynamically linked together
by a Bellman equation. A distinction must be made between models where a finite
number of decisions are made sequentially, which is the finite-horizon case, and mod-
els where there is no end to the sequence of decision problems, the infinite-horizon
case, which requires to discount the values of future period utilities. In the infinite
horizon case, the absence of a time horizon induces some stationarity in the value
associated to each option in a specific state. Inference is worked out, in section 6.3 for
the finite-horizon case, and in section 6.6 for the infinite-horizon case. The chapter
concludes with an investigation in section 6.9 of dynamic matching models, which
are two-sided discrete choice models.

While prices, understood as adjustable monetary transfers, have played a preva-
lent role in our analysis, one should note that there are many situations in the
economy when demand is not regulated by monetary prices, but by other adjust-
ment mechanisms. Taxis are a good example: as the price of taxi rides is generally
regulated and fixed, the demand for taxis in times of short supply is not regulated
by prices, but by waiting lines. Though waiting lines or other manifestation of
congestion, the utility associated with the options for which the capacity in insuffi-
cient will be decreased, up to a point at which the demand exactly meets capacity.
In that case, waiting times therefore play the role of numéraire, instead of money.
While waiting times share some similarities with monetary prices, they have a big
difference: they cannot be transfered to the other side of the market. Picking up
a passenger who has waited a long time does not make a driver better off. As a
result, chapter 7 studies equilibirum models with non-transferable utility and needs
to build a distinctive mathematical machinery on top of the exisiting one. A first
objective in the chapter is to understand the effect of the capacity constraints on the
systematic utilities through shadow prices. The consequence of rationing on welfare
is studied in section 7.2, and monotone comparative statics, which is the study of
how utilities respond to changes in capacity, is studied in section 7.3. The machin-
ery developed in this chapter allows to develop in section 7.5 an empirical matching
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model without prices, which is a nontransferable utility matching model with the
addition of random utility terms. The celebrated deferred acceptance algorithm of
Gale and Shapley is revisited and adapted to fit into the framework of discrete choice
in section 7.6, and its insightful reinterpretation by Hatfield and Milgrom is in turn
adapted to the context of discrete choice models and presented in section 7.7.

While the first chapter showed that most of the welfare and demand inversion
analysis could be performed without assuming the logit distributional framework, and
chapters 2 and 4 covered examples of distributions of random utilities that could be
used as alternatives to logit, the subsequent chapters (from chapter 3 to chapter 7)
used almost exclusively the logit framework, in the interest of simplicity and because
of the link with the logistic regression. However, it is interesting to note that these
chapters could have been written with very general distributions. Chapter 8 goes
back to the models of these four chapters and shows how they can be naturally
generalized beyond logit random utilities. Some attention needs to be paid however,
on how the adaptation is done. For instance, the natural estimation paradigm is no
longer maximum likelihood, as in this context the maximum likelihood estimation
problem is not convex anymore, but minimax regret estimation, which coincides
with maximum likelihood in the logistic case, but retains convexity and the moment
matching interpretation outside of that case. With this empirical strategy in mind,
we are able to revisit one-sided discrete choice models (section 8.1), empirical models
of two-sided matching (section 8.2), models of coalition formation (section 8.3), and
dynamic models (section 8.4).

Positioning. This book touches upon many disciplines from different horizons. As it
is hopefully clear from the various examples alluded to above, discrete choice methods
span over many disciplines in the social sciences. We have mentioned economics,
statistics, political science, marketing, psychology, operations research, ge-
ography, sociology, transportation studies, and the list is not exhaustive. But
from a mathematical standpoint, discrete choice models are connected with an excit-
ing mix of tools, whose diversity is evidenced by the range of the topics spanned by
the mathematical appendix, appendix A. The general theory and the welfare analysis
seen in chapter 1 makes a heavy use of optimization theory, more specifically lin-
ear programming, convex analysis and optimal transport. The use of special
distributions 4 borrowed from probability theory and mathematical statistics,
more specifically extreme value distributions. The characteristics approach seen
there used some Euclidian geometry, more specifically polyhedral geometry.
The Poisson regression formulation in chapter 3 uses standard statistical inference
theory. The gravity equation and the empirical models of matching seen in chap-
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ter 5 are closely connected with entropic optimal transport. The dynamic dis-
crete choice models seen in chapter 6 connect with dynamic programming, more
specifically reinforcement learning and Markov decision processes. And the
chapter on discrete choice models with limited availability builds on the important
theory of M-functions and submodular optimization. The text makes frequent
appeals to tensor algebra with vectorization and Kronecker products, and
to numerical optimization algorithms. Lastly, a particular emphasis has been
placed on coding. The python code demos in appendix B should make a strong point
that far from being abstract constructions, all the concepts introduced in this book
are practical and implementable.

Scope. In writing this book, some choices were made, and the book does not address
some topics that are related with the book’s subject. The book says little, for
example, about welfare analysis. Topics such as maximum score estimation, partial
identification, counterfactual analysis, assortment optimization are not covered. The
random utility paradigm is prevalent. Other points of view, such as the Bayesian
approach, are not represented. The reader should not be tempted to look for an
encyclopedic treatment. The selection of topics and points of view offered here is
obviously biased towards the author’s own tastes and inclinations.

Audience. Given the versatility of the topics, it is hard to predict if the book will
appeal to a very narrow or to a very wide audience, but while writing this book
I have bet on the latter. Graduate students and researchers in one of the social
sciences disciplines listed above with a good command of college-level mathematics
should find it useful to gain a deeper understanding of the mathematical tools on
which these models rest. And mathematicians and data scientists may also find
the book useful to understand what type of applications and models economists are
working on. My previous book, Optimal Transport Methods in Economics [86], has
been fortunate to attract this dual audience, and therefore create a bridge between
two communities. My hope is that the same should happen for the present project.

Prerequisites. This book features a number of mathematical appendices to make
it as self-contained as possible, but it does assume a minimal amount of mathemat-
ical knowledge. The reader is expected to possess mathematical notions that are
more or less the equivalent of those a STEM student freshly out of college would
commend. The reader is assumed to know the equivalent of an introductory course
in linear algebra, in real analysis, and in probability and statistics. For example, the
book assumes prior knowledge of the matrix product, but not of the Kronecker prod-
uct; of an exponential distribution, but not of an exponential family; of maximum
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likelihood estimation but not of M-estimation; of ordinary least squares, but not of
generalized linear models. Notions such as “almost surely,” “absolutely continuous
distribution,” “converging subsequence,” “full rank matrix”... will be assumed part
of common knowledge. Some knowledge of optimization theory will be helpful, but
is not strictly required as all the notions are introduced in several appendices. The
book also assumes a basic knowledge of Python; without it, the reader won’t be able
to appreciate the code demos which are a significant part of the learning experience.
The appendices do not feature a Python tutorial as there are many such tutorials on
the web. They do cover more advanced topics, such as automatic differentiation.

Organization of this book

This book is organized in seven chapters and two appendices. Chapter 1 covers
the basics of choice models with random utility, and chapter 4 gives examples of
such models. Chapter 3 connects random utility models with the logistic regression
and generalized linear models. Chapter 5 studies applications to trade, matching
and equilibrium pricing models. Chapter 6 covers dynamic discrete choice models.
Chapter 7 deals discrete choice models under capacity constraints. Chapter 8 extends
all the models introduced in the book to general distributions of random utility.
Appendix A provides the mathematical toolbox needed for this book. Appendix B
provides code demo that illustrate the chapters of this book.

Notations and conventions

Terminology. Our use of mathematical terms will try to find a good balance be-
tween precision and convenience. By probability measure we shall mean a Borel
probability measure; by a set, a measurable set. A continuous probability or continu-
ous distribution will mean a probability measure which is absolutely continuous with
respect to the Lebesgue measure; a conver function will mean a convex function in
the usual sense which can take any real value or +o0, is lower semi-continuous, and
which is not identically equal to +oo. A rectangle of R? is a Cartesian product of
d intervals of the real line (which may be either closed or open, either bounded or
unbounded).

Abbreviations. We will use a limited number of classical abbreviations: c.d.f.
for “cumulative distribution function”; p.d.f. for “probability density function”; a.s.
for “almost surely”; s.t. for “such that” or “subject to”; l.s.c. for “lower semicontinu-
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ous”, u.s.c. for “upper semicontinuous”; and w.l.0.g. for “without loss of generality”.
A poset will mean a “partially ordered set”.

Standard notations. The following notations, adopted throughout the book,
are more or less standard in the literature. The scalar product of two vectors x
and y of the same dimensions is denoted z"y. The Euclidean norm of z is denoted
|z||. Given a function f : R? — R, the gradient of f at z, denoted Vf(z), is
the vector of partial derivatives (9f(x)/0x1,...,0f(x)/0xy)", and D?f(x) is the
Hessian matriz at x, which is the matrix of second derivatives (92 f(x)/0x'0x7),
1 <i,7 <d. The set of y € R? such that f(z) > ( — )"y + f(z) for all z € R?
defines the subdifferential of f at x. The Legendre-Fenchel transform of f, denoted
f*, is defined as f*(y) = max,cpa {z'y — f(z)}. Given a function f : R* — R,
the Jacobian matriz of f at x, denoted D f(z), is the matrix of partial derivatives
(Ofi(x)/027), 1 <i <1, 1<j <k ForX asubset of R", the notation conv (X)
stands for the convex hull of X; these are the points of the form Zle iy, r; € X,
Ai >0, Zle Ai = 1, for any family (z;) of elements of X. The notation cone (X)
stands for the convex cone generated by X, which has the same definition without
the requirement Zle Ai = 1. The Dirac mass at ¢, denoted 9,,, is the probability
distribution which gives unit mass to z. Given a compact set C' of R? U(C') is the
uniform probability distribution on C. The set L'(P) is the set of functions which
are integrable with respect to the probability P. The set M(P, Q) is the set of
probability measures 7 such that if (X,Y) ~ 7, then X ~Pand Y ~ Q. If P is a
probability distribution over R% and 7" : R¢ — R¥ | then the push-forward of P by T,
denoted T#P, is a probability distribution on R? which is the distribution of 7" (X)
where X ~ P. The expectation of a random vector X ~ P is denoted Ep X, and the
variance-covariance matrix of X is denoted Vp(X) := Ep[X X '] — (Ep[X])(Ep[X])T.
The notation X 1L Y denotes that the random variables X and Y are independent.
Also, the c.d.f. associated with X ~ P is denoted indifferently Fx or Fp. The
quantile of that distribution, denoted (Qx or Qp, is defined as the right-continuous
pseudo-inverse of the c.d.f., namely Qx(¢) = inf{z : Fx(z) > t}. Given a set FE,
the power set of E, denoted 2F, is the set of subsets of E. If (E,>) is a poset
and r € E, the notation [z, 00) will denote the set {y € F : x < y}; similarly, the
set (—oo, z] will denote the set {y € E: x > y}. A correspondence T from E to F,
denoted I': E = Fisamap ' : & — 2. Given a lattice L, the set of sublattices of
L is denoted £ (L). Given z and y in R?, the notation z < y means x; < y; for all
1<i<d. Given x € R? and B C {1, ...,d}, we denote zp the subvector of z whose
indices are in B, and we identify x with (xg, xp.), where B¢ is the complement of B
in {1,...,d}. Given a subset E of R? the interior of E, denoted E™, is defined as the
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complement of the closure of the complement of E. The extended real line, denoted
R, is defined as the set R U {—o0} U {+oc}. A permutation of size n is a bijection
of {1,...,n} onto itself. If n is a natural number, [n] denotes the set {1,...,n}. The
set of permutations of size n is denoted &,,, and called the symmetric group. Given
a finite set E, the cardinality or number of elements of E is denoted |E|. Following
standard conventions in economics, given a vector z € R? and an index i € {1, ..., d},
the notation x_; will represent the subvector of z in R4~! obtained by removing the
i-th entry. Given a set X, cl(X) is the closure of X, conv(X) is its convex hull,
and cch(X) is its convex closure. The convex indicator function of X, denoted ¢y, is
equal to 0 on X, and to 400 on the complement of X. The binary indicator function,
denoted 1y, is equal to 1 on X and to 0 on the complement of X. Whenever there
is no ambiguity, we will call either function an indicator function. For X € N, and
z € [X], e% denotes the z-th vector of the canonical basis of R¥; it is the z-th
column of the identity matrix of order X. Given two vectors z and 2’ in R", we
denote z A 2’ the vector (min(z;, 2;));, and z V 2’ the vector (max(z;, z/));. We denote
z* the vector z V 0 and z~ the vector (—z) V 0.

Notations introduced in this book. This book will also introduce some
original notations that are not standard in the literature. Given a probability dis-
tribution P over RY, the welfare function a.k.a. Emaz function Gp is denoted as
Gp (U) = Ep [maxyey {U, + ¢,}], where € ~ P. When there is no ambiguity the
subscript P will be omitted. When Gp is differentiable, its gradient is denoted
7p(U) = VGp(U) and called the market share map. The Legendre-Fenchel trans-
form of G'p, denoted in a standard way G%, will be referred to as the generalized
entropy of choice associated with P. If A is a matrix of term A;;, and f : R — R,
f(A) denotes the matrix of term f(A;;). The notation [0:n] denotes the set of in-
tegers {0,1,...,n}. If I and J are integers, the notation [/ x J] denotes the list
of pairs 75 for 1 < i < I, and 1 < j < J, ordered in the lexicographic ordering:
11,12,...,1J,21,22,....2J,..., 11,12, ..., IJ. This notation extends to lists of triples
[I x J x K] and to any tuples.



