Optimal and better transport plans

W. Schachermayer (Univ. Wien)

joint work with M. Beiglböck, M. Goldstern, G. Maresch, J. Teichmann

University of Vienna Faculty of Mathematics

W. Schachermayer (Univ. Wien)

Optimal and better transport plans

Question (Villani):

c-cyclical-monotonicity \Rightarrow optimality?

e.g. for cost function being squared Euclidean distance in \mathbb{R}^n .

Answer (Pratelli, S-Teichmann, Beiglböck, Goldstern, Maresch,S.)

Under appropriate assumptions (covering the above special case): YES.

★ ∃ →

Question (Villani):

```
c-cyclical-monotonicity \Rightarrow optimality?
```

e.g. for cost function being squared Euclidean distance in \mathbb{R}^n .

Answer (Pratelli, S-Teichmann, Beiglböck, Goldstern, Maresch,S.)

Under appropriate assumptions (covering the above special case): YES.

Let $(X, \mu), (Y, \nu)$ be polish spaces equipped with Borel probability measures μ, ν and $c : X \times Y \to [0, \infty]$ Borel measurable. By $\Pi[\mu, \nu]$ we denote the probability measures π on $X \times Y$ with marginals μ and ν .

Definition

For given $c: X \times Y \to [0, \infty]$ a set $\Gamma \subseteq X \times Y$ is called *c*-cyclically monotone if, for $(x_1, y_1), \ldots, (x_n, y_n) \in$,

$$\sum_{i=1}^{n} c(x_i, y_i) \leq \sum_{i=1}^{n} c(x_i, y_{i+1}),$$

with $y_{n+1} = y_1$.

A measure $\pi \in \Pi(\mu, \nu)$ is called *c*-cyclically monotone if there is a *c*-cyclically monotone set Γ with $\pi(\Gamma) = 1$.

Enlightening example (Ambrosio-Pratelli):

X = Y = [0, 1[and $\mu = \nu =$ Lebesgue measure.

For $\alpha \in [0,1[\setminus \mathbb{Q} \text{ we define } T_{\alpha}(x) = x + \alpha$, with addition modulo 1. Let

$$c(x,y) = \left\{ egin{array}{ll} 1 & ext{if } x = y \ 2 & ext{if } \mathcal{T}_{lpha}(x) = y \ \infty & ext{otherwise} \end{array}
ight.$$

3

There are two finite transport plans, given by $T_0(x) = x$ and $T_{\alpha}(x) = x + \alpha$. Denoting by π_0 and π_{α} the corresponding measures on $X \times Y$ we have

$$I_{c}(\pi_{0}) = \iint_{X \times Y} c \ d\pi_{0} = 1$$
$$I_{c}(\pi_{\alpha}) = \iint_{X \times Y} c \ d\pi_{\alpha} = 2$$

Clearly π_0 is the optimal transport plan.

The only finite transport plans are given by the measures $\mu \pi_0 + (1 - \mu) \pi_{\alpha}$, where $0 \le \mu \le 1$.

There are (modulo null sets) precisely two *c*-cyclically monotone sets, namely

$$\mathsf{F}_{\mathsf{0}} = \{(x,x) : x \in [\mathsf{0},\mathsf{1}[\ \} \text{ and } \mathsf{F}_{lpha} = \{(x,x+lpha) : x \in [\mathsf{0},\mathsf{1}[\}\ .$$

Hence the transport plan π_{α} is supported by the *c*-cyclically monotone set Γ_{α} , but *fails to be optimal*.

Definition (S.-Teichmann):

A transport plan π is called *strongly c-cyclically monotone* if there are Borel-measurable functions $\phi: X \to [-\infty, \infty[$ and $\psi: Y \to [-\infty, \infty[$ such that $\phi(x) + \psi(y) \leq c(x, y),$ for every x, y, $\phi(x) + \psi(y) = c(x, y),$ for $\pi - a.e. x, y.$

Obvious: strong *c*-cyclically monotone \Rightarrow *c*-cyclically monotone BUT: \Leftarrow fails in general (π_{α} of Ambrosio-Pratelli).

Proposition (S.-Teichmann)

If c is lower semi-continuous and finitely valued, t.f.a.e. for $\pi \in \Pi(\mu, \nu)$ with $I_c(\pi) = \iint c d\pi < \infty$.

- π is optimal,
- π is strongly *c*-cyclically monotone,
- π is *c*-cyclically monotone.

Definition (S.-Teichmann):

A transport plan π is called *strongly c-cyclically monotone* if there are Borel-measurable functions $\phi: X \to [-\infty, \infty[$ and $\psi: Y \to [-\infty, \infty[$ such that $\phi(x) + \psi(y) \leq c(x, y),$ for **every** x, y, $\phi(x) + \psi(y) = c(x, y),$ for $\pi - a.e. x, y.$

Obvious: strong *c*-cyclically monotone \Rightarrow *c*-cyclically monotone BUT: \Leftarrow fails in general (π_{α} of Ambrosio-Pratelli).

Proposition (S.-Teichmann)

If c is lower semi-continuous and finitely valued, t.f.a.e. for $\pi \in \Pi(\mu, \nu)$ with $I_c(\pi) = \iint c d\pi < \infty$.

- π is optimal,
- π is strongly *c*-cyclically monotone,
- π is *c*-cyclically monotone.

A crucial step in the proof of $(i) \Rightarrow (ii)$

It is known (Kellerer '84,...) that - under the above assumptions - there is no duality gap, i.e.

$$\lim_{n\to\infty} (\mathbb{E}_{\mu}[\varphi_n] + \mathbb{E}_{\nu}[\psi_n]) = \mathbb{E}_{\pi}(c),$$

for some sequence $(\varphi_n, \psi_n)_{n=1}^{\infty}$ of bounded Borel-measurable functions such that $\varphi_n(x) + \psi_n(y) \le c(x, y)$.

How to pass to a limit?

Warning:

The limiting functions φ, ψ (if we succeed in finding them) have no reason to be in $L^1(\mu)$ and $L^1(\nu)$ respectively. There are easy counterexamples, even for $c(x, y) = (x - y)^2/2$ and $X = Y = \mathbb{R}$.

Komlos type Lemma (Delbaen-S. 94):

Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^0_+(\Omega, \mathcal{F}, \mathbb{P})$. There exist convex combinations $g_n \in conv(f_n, f_{n+1}, ...)$ such that $(g_n)_{n=1}^{\infty}$ converges almost surely.

Apply this lemma to the non-negative functions $(c - (\varphi_n + \psi_n))_{n=1}^{\infty}$.

Further cases where the answer to Villanis question is positive:

Pratelli:

When *c* is $[0, \infty]$ -valued and **continuous**.

Beiglböck, Goldstern, Maresch, S.:

When c is Borel measurable and $\{c = \infty\} = F \cup N$, where F is closed in $X \times Y$ and F is a $\mu \times \nu$ -null set.

< 口 > < 同 > < 三 > < 三

The general picture (Beiglböck, Goldstern, Maresch, S.): From now on *c* is (only) assumed to be Borel-measurable and π is a given element of $\Pi(\mu, \nu)$.

Example:

Let $X = Y = [0, 1], \mu = \nu$ the Lebesgue-measure and set

$$c(x,y) = \begin{cases} \infty & \text{for } x < y \\ 1 & \text{for } x = y \\ 0 & \text{for } x > y \end{cases}$$

for $(x, y) \in X \times Y$. The optimal (and in fact the only finite) transport plan π is concentrated on the diagonal and yields costs of one.

But, for every φ, ψ with $\varphi + \psi \leq c$ we have $\mathbb{E}_{\mu}[\varphi] + \mathbb{E}_{\nu}[\psi] \leq 0$.

There is a duality gap!

What are general conditions on a Borel-measure $c: X \times Y \rightarrow [0, \infty]$, insuring that there is no duality gap? Formally

$$egin{aligned} & \inf & & \mathbb{E}_{\pi}[c] &= \sup & \left(\mathbb{E}_{\mu}[arphi] + \mathbb{E}_{
u}[\psi]
ight) \ & & arphi, \psi & & \ & & arphi + \psi \leq c & \end{aligned}$$

The above example shows that, in general, there is a duality gap.

Lemma:

Let $\pi, \tilde{\pi} \in \Pi(\mu, \nu)$ and $\varphi : X \to [-\infty, \infty[, \psi : Y \to [-\infty, \infty[$ Borel-measurable such that $\mathbb{E}_{\pi}[\varphi + \psi] < \infty$ and $\mathbb{E}_{\tilde{\pi}}[\varphi + \psi] < \infty$. Then

$$\mathbb{E}_{\pi}[\varphi + \psi] = \mathbb{E}_{\tilde{\pi}}[\varphi + \psi].$$

In the case when $\varphi \in L^1(\mu), \psi \in L^1(\nu)$ we also have

$$\mathbb{E}_{\pi}[\varphi + \psi] = \mathbb{E}_{\mu}[\varphi] + \mathbb{E}_{\nu}[\psi].$$

For Borel-measurable $c : X \times Y \to [0, \infty]$ such that there is some $\pi_0 \in \Pi(\mu, \nu)$ with finite transport cost $\mathbb{E}_{\pi_0}[c]$, and φ, ψ as above with $\varphi + \psi \leq c$, may therefore well-define

$$J(arphi,\psi)=\mathbb{E}_{\pi}[arphi+\psi],\qquad \pi\in\Pi(\mu,
u),\mathbb{E}_{\pi}[\boldsymbol{c}]<\infty.$$

Theorem (Beiglböck-S.):

Assume that $c: X \times Y \to [0, \infty]$ is Borel-measurable and $\mu \times \nu$ -a.s. finite, and suppose that there is $\pi_0 \in \Pi(\mu, \nu)$ with $\mathbb{E}_{\pi_0}[c] < \infty$.

Then there are Borel measurable functions

$$\hat{\phi}: X
ightarrow [-\infty,\infty[, \; \hat{\psi}: Y
ightarrow [-\infty,\infty[$$

such that

$$\hat{arphi}(x)+\hat{\psi}(y)\leq c(x,y), \;\; ext{for all } (x,y)\in X imes Y,$$

and

$$egin{aligned} & \inf & \mathbb{E}_{\pi}[c] = J(\hat{arphi}, \hat{\psi}) = \sup J(arphi, \psi). \ & \pi \in \Pi(\mu,
u) & \varphi, \psi ext{ Borel} \ & arphi + \psi \leq c \end{aligned}$$

Proposition

Let X, Y be Polish spaces equipped with Borel probability measures μ, ν . Let $c : X \times Y \to [0, \infty]$ be Borel measurable, assume that π is a finite transport plan and set $\alpha = I_c[\pi] - I_c \ge 0$. Then there exists a function $f : X \times Y \to [0, \infty]$ such that $\int f d\pi = \alpha$ and, for all $(x_1, y_1), \ldots, (x_n, y_n) \in X \times Y$,

$$\sum_{i=1}^{n} c(x_{i+1}, y_i) + f(x_i, y_i) - c(x_i, y_i) \ge 0.$$

Proposition

Assume that X, Y are Polish spaces equipped with Borel probability measures μ, ν , that $\overline{c} : X \times Y \to (-\infty, \infty]$ is Borel measurable and $\mu \otimes \nu$ -a.e. finite and that $\underline{c} : X \times Y \to [-\infty, \infty)$ is Borel measurable. If

$$\sum_{i=1}^n \bar{c}(x_{i+1}, y_i) - \underline{c}(x_i, y_i) \ge 0$$

for all $x_1, \ldots, x_n \in X$, $y_1, \ldots, y_n \in Y$, there exist Borel measurable functions $\phi: X \to [-\infty, \infty), \psi: Y \to [-\infty, \infty)$ and Borel sets $X' \subseteq X, Y' \subseteq Y$ of full measure such that

$$\underline{c}(x,y) \leq \phi(x) + \psi(y) \leq \overline{c}(x,y),$$

where the lower bound holds for $x \in X', y \in Y'$ and the upper bounded is valid for all $x \in X, y \in Y$.

A variant (Beiglböck-S.) of the Ambrosio-Pratelli Example:

In the above setting let

$$f(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } T_{\alpha}(x) = y, \quad x \in [0, \frac{1}{2}[\\ 2 & \text{if } T_{\alpha}(x) = y, \quad x \in [\frac{1}{2}, 1[\\ \infty & \text{otherwise} \end{cases}$$

In this case π_0 and π_α are both primal optimizers.

Duality holds true, i.e.

$$1 = \mathbb{E}_{\pi_0}(c) = \sup\{\mathbb{E}_{\mu}[arphi] + \mathbb{E}_{
u}[\psi]\}$$

where the sup is taken over all Borel-measureable, integrable φ, ψ satisfying $\varphi + \psi \leq c$.

But we cannot pass to a limit: there is no dual optimizer $(\hat{\varphi}, \hat{\psi})$, i.e. Borel measurable functions $\hat{\varphi}, \hat{\psi}$ such that $\hat{\varphi} + \hat{\psi} \leq c$ and

$$\mathbb{E}_{\pi}[\hat{\varphi}, \hat{\psi}] = 1,$$
 for finite transport plans π .