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Question (Villani):

c-cyclical-monotonicity ⇒ optimality?

e.g. for cost function being squared Euclidean distance in Rn.

Answer (Pratelli, S-Teichmann, Beiglböck, Goldstern, Maresch,S.)

Under appropriate assumptions (covering the above special case):
YES.

W. Schachermayer (Univ. Wien) joint work with M. Beiglböck, M. Goldstern, G. Maresch, J. TeichmannOptimal and better transport plans



Question (Villani):

c-cyclical-monotonicity ⇒ optimality?

e.g. for cost function being squared Euclidean distance in Rn.

Answer (Pratelli, S-Teichmann, Beiglböck, Goldstern, Maresch,S.)
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Let (X , µ), (Y , ν) be polish spaces equipped with Borel probability
measures µ, ν and c : X × Y → [0,∞] Borel measurable.
By Π[µ, ν] we denote the probability measures π on X × Y with
marginals µ and ν.

Definition

For given c : X × Y → [0,∞] a set Γ ⊆ X × Y is called
c-cyclically monotone if, for (x1, y1), . . . , (xn, yn) ∈,

n∑
i=I

c(xi , yi ) ≤
n∑

i=I

c(xi , yi+1),

with yn+1 = y1.

A measure π ∈ Π(µ, ν) is called c-cyclically monotone if there is a
c-cyclically monotone set Γ with π(Γ) = 1.
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Enlightening example (Ambrosio-Pratelli):

X = Y = [0, 1[ and µ = ν = Lebesgue measure.

For α ∈ [0, 1[\Q we define Tα(x) = x + α, with addition modulo
1. Let

c(x , y) =


1 if x = y
2 if Tα(x) = y
∞ otherwise
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There are two finite transport plans, given by T0(x) = x and
Tα(x) = x + α.
Denoting by π0 and πα the corresponding measures on X × Y we
have

Ic(π0) =

∫∫
X×Y

c dπ0 = 1

Ic(πα) =

∫∫
X×Y

c dπα = 2

Clearly π0 is the optimal transport plan.
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The only finite transport plans are given by the measures
µ π0 + (1− µ) πα, where 0 ≤ µ ≤ 1.

There are (modulo null sets) precisely two c-cyclically monotone
sets, namely

Γ0 = {(x , x) : x ∈ [0, 1[ } and Γα = {(x , x + α) : x ∈ [0, 1[} .

Hence the transport plan πα is supported by the c-cyclically
monotone set Γα, but fails to be optimal.
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Definition (S.-Teichmann):

A transport plan π is called strongly c-cyclically monotone if there
are Borel-measurable functions
φ : X → [−∞,∞[ and ψ : Y → [−∞,∞[ such that

φ(x) + ψ(y) ≤ c(x , y), for every x , y ,

φ(x) + ψ(y) = c(x , y), for π − a.e. x , y .

Obvious: strong c-cyclically monotone ⇒ c-cyclically monotone
BUT: ⇐ fails in general (πα of Ambrosio-Pratelli).

Proposition (S.-Teichmann)

If c is lower semi-continuous and finitely valued, t.f.a.e. for
π ∈ Π(µ, ν) with Ic(π) =

∫∫
cdπ <∞.

π is optimal,

π is strongly c-cyclically monotone,

π is c-cyclically monotone.
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A crucial step in the proof of (i)⇒ (ii)

It is known (Kellerer ’84,...) that - under the above assumptions -
there is no duality gap, i.e.

lim
n→∞

(
Eµ[ϕn] + Eν [ψn]

)
= Eπ(c),

for some sequence (ϕn, ψn)∞n=1 of bounded Borel-measurable
functions such that ϕn(x) + ψn(y) ≤ c(x , y).

How to pass to a limit?

Warning:

The limiting funtions ϕ,ψ (if we succeed in finding them) have no
reason to be in L1(µ) and L1(ν) respectively. There are easy
counterexamples, even for c(x , y) = (x − y)2/2 and X = Y = R.
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Komlos type Lemma (Delbaen-S. 94):

Let (fn)∞n=1 be a sequence in L0
+(Ω,F ,P). There exist convex

combinations gn ∈ conv(fn, fn+1, . . . ) such that (gn)∞n=1 converges
almost surely.

Apply this lemma to the non-negative functions
(c − (ϕn + ψn))∞n=1.

Further cases where the answer to Villanis question is positive:

Pratelli:

When c is [0,∞]-valued and continuous.

Beiglböck, Goldstern, Maresch, S.:

When c is Borel measurable and {c =∞} = F ∪ N, where F is
closed in X × Y and F is a µ× ν-null set.
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The general picture (Beiglböck, Goldstern, Maresch, S.):
From now on c is (only) assumed to be Borel-measurable and π is
a given element of Π(µ, ν).

Example:

Let X = Y = [0, 1], µ = ν the Lebesgue-measure and set

c(x , y) =


∞ for x < y
1 for x = y
0 for x > y

for (x , y) ∈ X × Y . The optimal (and in fact the only finite)
transport plan π is concentrated on the diagonal and yields costs
of one.

But, for every ϕ,ψ with ϕ+ ψ ≤ c we have Eµ[ϕ] + Eν [ψ] ≤ 0.

There is a duality gap!
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Remaining question:

What are general conditions on a Borel-measure
c : X × Y → [0,∞], insuring that there is no duality gap?
Formally

inf Eπ[c] = sup (Eµ[ϕ] + Eν [ψ])
π ∈ Π(µ, ν) ϕ,ψ

ϕ+ ψ ≤ c

The above example shows that, in general, there is a duality gap.
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Lemma:

Let π, π̃ ∈ Π(µ, ν) and ϕ : X → [−∞,∞[, ψ : Y → [−∞,∞[
Borel-measurable such that Eπ[ϕ+ ψ] <∞ and Eπ̃[ϕ+ ψ] <∞.
Then

Eπ[ϕ+ ψ] = Eπ̃[ϕ+ ψ].

In the case when ϕ ∈ L1(µ), ψ ∈ L1(ν)
we also have

Eπ[ϕ+ ψ] = Eµ[ϕ] + Eν [ψ].

For Borel-measurable c : X × Y → [0,∞] such that there is some
π0 ∈ Π(µ, ν) with finite transport cost Eπ0 [c], and ϕ,ψ as above
with ϕ+ ψ ≤ c, may therefore well-define

J(ϕ,ψ) = Eπ[ϕ+ ψ], π ∈ Π(µ, ν),Eπ[c] <∞.
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Theorem (Beiglböck-S.):

Assume that c : X × Y → [0,∞] is Borel-measurable and
µ× ν-a.s. finite, and suppose that there is π0 ∈ Π(µ, ν) with
Eπ0 [c] <∞.
Then there are Borel measurable functions

φ̂ : X → [−∞,∞[, ψ̂ : Y → [−∞,∞[

such that

ϕ̂(x) + ψ̂(y) ≤ c(x , y), for all (x , y) ∈ X × Y ,

and
inf Eπ[c] = J(ϕ̂, ψ̂) = sup J(ϕ,ψ).

π ∈ Π(µ, ν) ϕ,ψ Borel
ϕ+ ψ ≤ c
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Proposition

Let X ,Y be Polish spaces equipped with Borel probability
measures µ, ν. Let c : X × Y → [0,∞] be Borel measurable,
assume that π is a finite transport plan and set α = Ic [π]− Ic ≥ 0.
Then there exists a function f : X × Y → [0,∞] such that∫

f dπ = α and, for all (x1, y1), . . . , (xn, yn) ∈ X × Y ,

n∑
i=1

c(xi+1, yi ) + f (xi , yi )− c(xi , yi ) ≥ 0.
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Proposition

Assume that X ,Y are Polish spaces equipped with Borel
probability measures µ, ν, that c̄ : X × Y → (−∞,∞] is Borel
measurable and µ⊗ ν-a.e. finite and that c : X ×Y → [−∞,∞) is
Borel measurable. If

n∑
i=1

c̄(xi+1, yi )− c(xi , yi ) ≥ 0

for all x1, . . . , xn ∈ X , y1, . . . , yn ∈ Y , there exist Borel measurable
functions φ : X → [−∞,∞), ψ : Y → [−∞,∞) and Borel sets
X ′ ⊆ X ,Y ′ ⊆ Y of full measure such that

c(x , y) ≤ φ(x) + ψ(y) ≤ c̄(x , y),

where the lower bound holds for x ∈ X ′, y ∈ Y ′ and the upper
bounded is valid for all x ∈ X , y ∈ Y .
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A variant (Beiglböck-S.) of the Ambrosio-Pratelli Example:

In the above setting let

c(x , y) =


1 if x = y
0 if Tα(x) = y , x ∈ [0, 1

2 [
2 if Tα(x) = y , x ∈ [1

2 , 1[
∞ otherwise

In this case π0 and πα are both primal optimizers.
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Duality holds true, i.e.

1 = Eπ0(c) = sup{Eµ[ϕ] + Eν [ψ]}

where the sup is taken over all Borel-measureable, integrable ϕ,ψ
satisfying ϕ+ ψ ≤ c .
But we cannot pass to a limit: there is no dual optimizer (ϕ̂, ψ̂),
i.e. Borel measurable functions ϕ̂, ψ̂ such that ϕ̂+ ψ̂ ≤ c and

Eπ[ϕ̂, ψ̂] = 1, for finite transport plans π.
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