VECTOR QUANTILE REGRESSION

Alfred Galichon (NYU Econ+Math)

Based on joint works with G. Carlier and V. Chernozhukov.

November 2017

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 1/27

- Carlier, Chernozhukov and G. (2016). "Vector quantile regression: an optimal transport approach." Annals of Statistics.
- ► Carlier, Chernozhukov and G. (2017). "Vector quantile regression beyond the specified case." Journal of multivariate analysis.

Section 1

INTRODUCTION

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 3/ 27

▶ Consider a standard hedonic model (Ekeland, Heckman and Nesheim, Heckman, Nesheim and Matzkin). A consumer of observed characteristics $x \in \mathbb{R}^k$ and latent characteristics $u \in \mathbb{R}$ choosing a good whose quality is a scalar $y \in \mathbb{R}$ (say, the size of a house). Assume utility of consumer choosing y is given by

$$S(x,y) + uy$$

where S(x, y) is the observed part of the consumer surplus, which is assumed to be concave in y, and uy is a preference shock.

The indirect utility is given by

$$\varphi(x, u) = \max_{y} \left\{ S(x, y) + uy \right\}$$

so by first order conditions, $\partial S(x, y) / \partial y + u = 0$, thus, letting $\psi(x, y) = -S(x, y)$, quality y is chosen by consumer (x, u(x, y)) such that

$$u(x,y) := \frac{\partial \psi(x,y)}{\partial y}$$

which is nondecreasing in y.

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 4/ 27

- ► The econometrician:
 - ► assumes U is independent from X and postulates the distribution of U (say, U ([0, 1]))
 - observes the distribution of choices Y given observable characteristics X = x.
- Then (Matzkin), by monotonicity of y(x, u) in u, one has

$$\frac{\partial \psi(x, y)}{\partial y} = F_{Y|X}(y|x)$$

which identifies $\partial_y \psi$, and hence the marginal surplus surplus $\partial_y S(x, y)$. • By the same token,

$$\frac{\partial \varphi\left(x, u\right)}{\partial u} = F_{Y|X}^{-1}\left(u|x\right)$$

identifies $\partial_u \varphi(x, u)$ to $F_{Y|X}^{-1}$.

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 5/ 27

- The aim of this talk is to:
 - generalize this strategy to vector y
 - obtain a meaningful notion of conditional vector quantile
 - extend Koenker and Bassett's (1978) quantile regression to the vector case

Section 2

CONDITIONAL VECTOR QUANTILES

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 7/ 27

MULTIVARIATE EXTENSION OF MATZKIN'S STRATEGY

▶ Now assume quality is a vector $y \in \mathbb{R}^d$, and latent characteristics is $u \in \mathbb{R}^d$ (say, size+amenities). Assume utility of consumer choosing y is given by

$$S(x,y) + u^{\top}y$$

where S(x, y) is still assumed to be concave in y.

► As before, let $\psi(x, y) = -S(x, y)$. By first order conditions, quality y is chosen by consumer (x, u(x, y)) such that

$$u(x,y) := \nabla_y \psi(x,y)$$

which, conditional on x, is "vector nondecreasing" in y in a generalized sense, where vector nondecreasing=gradient of a convex function.

- ► As before, assume:
 - The distribution of U given X = x is μ (say $\mathcal{U}([0, 1]^d)$)
 - The distribution $F_{Y|X}$ of Y given X is observed.
- ► **Question**: Is $\nabla_y \psi$ identified as in the scalar case? equivalently, and omitting the dependence in *x*, is there a convex function $\psi(y)$ such that

$$\nabla \psi(\mathbf{Y}) \sim \mu$$
?

CARLIER, CHERNOZHUKOV, GALICHON

IDENTIFICATION VIA MASS TRANSPORTATION

 \blacktriangleright The answer, is yes. In fact, ψ is the solution to

$$\min_{\psi,\varphi} \int \psi(y) \, dF_{Y}(y) + \int \varphi(u) \, d\mu(u) \tag{1}$$

s.t. $\psi(y) + \varphi(u) \ge u^{\top} y$

which is the Monge-Kantorovich problem.

- This is the "mass transportation approach" to identification, applied to a number of contexts by G and Salanié (2012), Chiong, G, and Shum (2014), Bonnet, G, and Shum (2015), Chernozhukov, G, Henry and Pass (2015).
- Problem (1) has a primal formulation which is

$$\max \mathbb{E} \left[U^{\top} Y \right]$$
(2)
$$Y \sim F_{Y}$$
$$U \sim \mu$$

Fundamental property: both (1) and (2) have solutions, and the solutions are related by

$$U = \nabla \psi(Y)$$
 and $Y = \nabla \varphi(U)$.

CARLIER, CHERNOZHUKOV, GALICHON

► We call the "Vector Quantile" map associated to the distribution of Y (relative to distribution µ) as

$$Q_{Y}\left(u\right):=\nabla\varphi\left(u\right)$$

where φ is a solution to (1).

- Q_Y is the unique map which is the gradient of a convex function and which maps distribution μ onto F_Y .
- ► See Ekeland, G and Henry (2012), Carlier, G and Santambrogio (2010), Chernozhukov, G, Hallin and Henry (2015).

CONDITIONAL VECTOR QUANTILES

Now let us go back to the conditional case. We have

$$\min_{\psi,\varphi} \int \psi(x,y) \, dF_{XY}(x,y) + \int \varphi(x,u) \, dF_X(x) \, d\mu(u) \tag{3}$$

s.t. $\psi(x,y) + \varphi(x,u) \ge u^\top y$

which is an infinite-dimensional linear programming problem.

▶ The functions $\varphi(x, .)$ and $\psi(x, .)$ are conjugate in the sense that

$$\varphi(\mathbf{x}, u) = \sup_{\mathbf{y}} \left\{ -\psi(\mathbf{x}, \mathbf{y}) + u^{\top} \mathbf{y} \right\} \psi(\mathbf{x}, \mathbf{y}) = \sup_{u} \left\{ -\varphi(\mathbf{x}, u) + u^{\top} \mathbf{y} \right\}$$
(4)

Problem (1) has a primal formulation which is

$$\max \mathbb{E} \begin{bmatrix} U^{\top} Y \end{bmatrix}$$
(5)
$$(X, Y) \sim F_{XY}$$
$$U \sim \mu, \ U \perp X$$

Fundamental property: both (1) and (2) have solutions, and the solutions are related by

$$U = \nabla \psi (X, Y) \text{ and } Y = \nabla \varphi (X, U).$$

CARLIER, CHERNOZHUKOV, GALICHON

► We call the "Conditional Vector Quantile" map associated to the distribution of Y conditional on X (relative to distribution µ) as

$$Q_{\mathbf{Y}|\mathbf{X}}\left(u|x\right) := \nabla_{u}\varphi\left(x,u\right)$$

where φ is a solution to (1).

► Q_Y is the unique map which is the gradient of a convex function in u and which maps distribution $F_X \otimes \mu$ onto F_{XY} .

We assume that the following condition holds:

- (N) F_U has a density f_U with respect to the Lebesgue measure on \mathbb{R}^d with a convex support set \mathcal{U} .
- (C) For each $x \in \mathcal{X}$, the distribution $F_{Y|X}(\cdot, x)$ admits a density $f_{Y|X}(\cdot, x)$ with respect to the Lebesgue measure on \mathbb{R}^d .
- $({\rm M})~{\rm The~second}~{\rm moment}~{\rm of}~Y$ and the second moment of U are finite, namely

$$\int \int \|y\|^2 F_{YX}(dy, dx) < \infty \text{ and } \int \|u\|^2 F_U(du) < \infty.$$

DEFINITION

The map $(u, x) \mapsto \nabla_u \varphi(u, x)$ will be called the conditional vector quantile function, namely, denoted $Q_{Y|X}(u, x)$.

CARLIER, CHERNOZHUKOV, GALICHON

THEOREM (CONDITIONAL VECTOR QUANTILES AS OPTIMAL TRANSPORT)

Suppose conditions (N), (C), and (M) hold. (i) There exists a pair of maps $(u, x) \mapsto \varphi(u, x)$ and $(y, x) \mapsto \psi(y, x)$, each mapping from $\mathbb{R}^d \times \mathcal{X}$ to \mathbb{R} , that solve the problem (1). For each $x \in \mathcal{X}$, the maps $u \mapsto \varphi(u, x)$ and $y \mapsto \psi(y, x)$ are convex and satisfy (4). (ii) The vector $U = Q_{Y|X}^{-1}(Y, X)$ is a solution to the primal problem (2) and is unique in the sense that any other solution U^* obeys $U^* = U$ almost surely. The primal (2) and dual (1) have the same value. (iii) The maps $u \mapsto \nabla_u \varphi(u, x)$ and $y \mapsto \nabla_y \psi(y, x)$ are inverses of each other: for each $x \in \mathcal{X}$, and for almost every u under F_U and almost every yunder $F_{Y|X}(\cdot, x)$

$$\nabla_{\mathbf{y}}\psi(\nabla_{\mathbf{u}}\varphi(\mathbf{u},\mathbf{x}),\mathbf{x})=\mathbf{u},\quad \nabla_{\mathbf{u}}\varphi(\nabla_{\mathbf{y}}\psi(\mathbf{y},\mathbf{x}),\mathbf{x})=\mathbf{y}.$$

CARLIER, CHERNOZHUKOV, GALICHON

Section 3

VECTOR QUANTILE REGRESSION

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 15/ 27

LINEARITY

- ▶ We can replace X by f(X) denote a vector of regressors formed as transformations of X, such that the first component of X is 1 (intercept term in the model) and such that conditioning on X is equivalent to conditioning on f(X). The dimension of X is denoted by p and we shall denote $X = (1, X_{-1})$ with $X_{-1} \in \mathbb{R}^{p-1}$. Set $\bar{x} = E[X]$.
- Recall that

$$Q_{\mathbf{Y}|\mathbf{X}}(u,x) = \nabla_u \varphi(u,x)$$

thus we would like to impose linearity with respect to X.

• Set $\varphi(u, x) = b(u)^{\top}x$, so that problem (1) is changed into

$$\min_{\psi,b} \int \psi(x,y) \, dF_{XY}(x,y) + \bar{x}^{\top} \int b(u) \, d\mu(u)$$

$$s.t. \ \psi(x,y) + x^{\top} b(u) \ge u^{\top} y$$
(6)

and as before, we may express ψ as a function of b and get

$$\psi(\mathbf{x}, \mathbf{y}) = \sup_{\mathbf{y}} \left\{ u' \mathbf{y} - \mathbf{x}^{\top} b(u) \right\}.$$

whose first order conditions are $y = x^{\top} Db(u)$.

CARLIER, CHERNOZHUKOV, GALICHON

LINEARITY

► As before, problem (6) has a dual formulation. The corresponding primal formulation is

$$\max \mathbb{E} \begin{bmatrix} U^{\top} Y \end{bmatrix}$$
(7)
$$(X, Y) \sim F_{XY}$$
$$U \sim \mu$$
$$\mathbb{E} [X|U] = \bar{x}$$

Equivalently,

$$\min E \left[\|U - Y\|^2 \right].$$

$$(X, Y) \sim F_{XY}$$

$$U \sim \mu$$

$$E [X|U] = \bar{x}$$
(8)

 Vector Quantile Regression was introduced in Carlier, Chernozhukov, and G (Ann. Stats., 2016). While the focus on that paper was on correct specification, today we'll give further results beyond that case.

CARLIER, CHERNOZHUKOV, GALICHON

(G) The support of $W = (X_{-1}, Y)$, say \mathcal{W} , is a closure of an open bounded convex subset of \mathbb{R}^{p-1+d} , the density f_W of W is uniformly bounded from above and does not vanish anywhere on the interior of \mathcal{W} . The set \mathcal{U} is a closure of an open bounded convex subset of \mathbb{R}^d , and the density f_U is strictly positive over \mathcal{U} .

THEOREM

Suppose that condition (G) holds. Then the dual problem (6) admits at least a solution (ψ, B) such that

$$\psi(x, y) = \sup_{u \in \mathcal{U}} \{ u^\top y - B(u)^\top x \}.$$

CARLIER, CHERNOZHUKOV, GALICHON

Assume:

(QL) We have a quasi-linear representation a.s.

$$Y = \beta(\widetilde{U})^{\top} X, \quad \widetilde{U} \sim F_U, \quad \mathbb{E}\left[X \mid \widetilde{U}\right] = \mathbb{E}\left[X\right],$$

where $u \mapsto \beta(u)$ is a map from \mathcal{U} to the set $\mathcal{M}_{p \times d}$ of $p \times d$ matrices such that $u \mapsto \beta(u)^{\top} x$ is a gradient of convex function for each $x \in \mathcal{X}$ and a.e. $u \in \mathcal{U}$:

$$\beta(u)^{\top} x = \nabla_u \Phi_x(u), \quad \Phi_x(u) := B(u)^{\top} x,$$

where $u \mapsto B(u)$ is C^1 map from \mathcal{U} to \mathbb{R}^d , and $u \mapsto B(u)^\top x$ is a strictly convex map from \mathcal{U} to \mathbb{R} .

This condition allows for a degree of misspecification, which allows for a latent factor representation where the latent factor obeys the relaxed independence constraints.

CARLIER, CHERNOZHUKOV, GALICHON

Theorem

Suppose conditions (M), (N), (C), and (QL) hold. (i) The random vector \widetilde{U} entering the quasi-linear representation (QL) solves (7). (ii) The quasi-linear representation is unique a.s. that is if we also have $Y = \overline{\beta}(\overline{U})^{\top}X$ with $\overline{U} \sim F_U$, $\mathbb{E}[X | \overline{U}] = \mathbb{E}[X]$, $u \mapsto X^{\top}\overline{\beta}(u)$ is a gradient of a strictly convex function in $u \in \mathcal{U}$ a.s., then $\overline{U} = \widetilde{U}$ and $X^{\top}\beta(\widetilde{U}) = X^{\top}\overline{\beta}(\widetilde{U})$ a.s. ► Sample (X_i, Y_i) of size n. Discretize U into m sample points. Let p be the number of regressors. Program is

$$\max_{\substack{\pi \ge 0}} Tr(U^{\mathsf{T}}\pi Y)$$
$$\mathbf{1}_{m}^{\mathsf{T}}\pi = \nu^{\mathsf{T}} \ [\psi^{\mathsf{T}}]$$
$$\pi X = \mu \bar{x} \ [b]$$

where X is $n \times p$, Y is $n \times d$, ν is $n \times 1$ such that $\nu_i = 1/n$; U is $m \times d$, μ is $m \times 1$; π is $m \times n$.

► To run this optimization problem, need to vectorize matrices. Very easy using Kronecker products. We have

$$Tr (U^{\mathsf{T}} \pi Y) = \operatorname{vec} (I_d)^{\mathsf{T}} (Y \otimes U)^{\mathsf{T}} \operatorname{vec} (\pi)$$
$$\operatorname{vec} (\mathbb{1}_m^{\mathsf{T}} \pi) = (I_n \otimes \mathbb{1}_m^{\mathsf{T}}) \operatorname{vec} (\pi)$$
$$\operatorname{vec} (\pi X) = (X^{\mathsf{T}} \otimes I_m) \operatorname{vec} (\pi)$$

Program is implemented in Matlab; optimization phase is done using state-of-the-art LP solver (Gurobi).

CARLIER, CHERNOZHUKOV, GALICHON

Section 4

BEYOND CORRECT SPECIFICATION

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 22/27

Theorem: primal variables π (u, x, y) as well as dual variables (ψ, b) exist in general (i.e. beyond correct specification). They are related by complementary slackness

$$(u, x, y) \in Supp(\pi) \Longrightarrow \psi(x, y) = u^{\top}y - x^{\top}b(u)$$

Proof of existence of a dual solution is significantly more involved than Monge-Kantorovich theorem.

► Letting $\Phi_x(u) := x^{\top} b(u)$, whose Legendre transform is $y \mapsto \psi(x, y)$, $\Phi_x^{**}(u)$ is the convex envelope of $\Phi_x(u)$ for fixed x, and we have

$$(\textit{u},\textit{x},\textit{y})\in\textit{Supp}\,(\pi)\Longrightarrow\textit{y}\in\partial\Phi_{\textit{x}}^{**}\left(\textit{u}\right)$$

This provides a general representation result of the dependence between X and Y:

$$\begin{cases} Y \in \partial \Phi_X^{**}\left(U\right) \text{ with } x \mapsto \Phi_x\left(u\right) \text{ affine} \\ \Phi_X\left(U\right) = \Phi_X^{**}\left(U\right) \text{ a.s.} \\ \mathbb{E}\left[X|U\right] = \mathbb{E}\left[X\right], \ U \sim \mathcal{U}(\left[0,1\right]^d) \end{cases}$$

CARLIER, CHERNOZHUKOV, GALICHON

4

DIMENSION 1: CONNECTION WITH CLASSICAL QR

- Assume d = 1. What is the connection with classical QR?
- Recall the dual formulation of classical Quantile Regression (see Koenker's 2005 monograph)

$$\begin{split} & \max_{V_t \geq 0} \mathbb{E}[A_t Y] \\ & A_t \leq 1 \ [P] \\ & \mathbb{E}[A_t X] = (1-t) \, \bar{x} \ [\beta_t] \end{split}$$

When t → x^Tβ(t) is nondecreasing, thus t → A_t is nonincreasing. However, in sample, t → A_t has no reason to be nonincreasing in general. We can thus form the augmented problem, including this constraint:

$$\max_{A_t \ge 0} \int_0^1 \mathbb{E}[A_u Y] du$$
$$A_t \le 1 \ [P]$$
$$\mathbb{E}[A_t X] = (1-t) \bar{x} \ [\beta_t]$$
$$A_t \le A_s, \ t \ge s$$

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 24/27

- ► Theorem: this problem is equivalent to VQR.
- ► Indeed, let $U = \int_0^1 A_\tau d\tau$. One has $A_t = 1 \{U \ge t\}$ for $t \in [0, 1]$, and the previous problem rewrites

$$\max_{U} \mathbb{E}[UY]$$
$$\mathbb{E}[1 \{ U \ge t \} X] = (1 - t) \bar{x} \ \forall t \in [0, 1]$$

or alternatively

$$\max_{U} \mathbb{E}[UY]$$
$$U \sim \mathcal{U}([0,1]), \ \mathbb{E}[X|U] = \bar{x}$$

which is VQR. Dual variable b is recovered via $b(t) = \int_0^t \beta_\tau d\tau$.

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 25/ 27

- Question: why mean-independence plays a role in QR?
- ► Definition: QR is *quasi-specified* if $t \to x^{\top} \hat{\beta}_t^{QR}$ is increasing for all x, i.e. if there is no "crossing problem".
- ► Theorem: if QR is quasi-specified, then there is a representation

$$Y = X^{\top} \hat{\beta}_{U}^{QR}, \ U \sim \mathcal{U}\left([0,1]\right), \ \mathbb{E}[X|U] = \bar{x}.$$

► Proof: there exists t(x, y) such that $x^{\top}\hat{\beta}_{t(x,y)}^{QR} = y$. Letting U = t(X, Y), one has $Y = X^{\top}\hat{\beta}_{U}^{QR}$; but $1\{U \ge t\} = 1\{Y \ge X^{\top}\hat{\beta}_{t}^{QR}\}$, hence $\mathbb{E}[X1\{U \ge t\}] = \bar{x}(1-t)$, QED.

CARLIER, CHERNOZHUKOV, GALICHON

VECTOR QUANTILE REGRESSION

SLIDE 26/27

- Empirical application in progress: hedonics models (real estate prices; wine prices). Possible other applications to measures of financial risk.
- ► Numerical methods: auction algorithm; entropic regularization...
- ► Sparse versions when vector of covariates *X* is high-dimensional.